Python操作数据库实战
pymysql
# -*- coding: utf-8 -*- """ @Datetime: 2018/12/26 @Author: Zhang Yafei """ import pymysql from DBUtils.PooledDB import PooledDB POOL = PooledDB( creator=pymysql, # 使用链接数据库的模块 maxconnections=6, # 连接池允许的最大连接数,0和None表示不限制连接数 mincached=2, # 初始化时,链接池中至少创建的空闲的链接,0表示不创建 maxcached=5, # 链接池中最多闲置的链接,0和None不限制 maxshared=3, # 链接池中最多共享的链接数量,0和None表示全部共享。PS: 无用,因为pymysql和MySQLdb等模块的 threadsafety都为1,所有值无论设置为多少,_maxcached永远为0,所以永远是所有链接都共享。 blocking=True, # 连接池中如果没有可用连接后,是否阻塞等待。True,等待;False,不等待然后报错 maxusage=None, # 一个链接最多被重复使用的次数,None表示无限制 setsession=[], # 开始会话前执行的命令列表。如:["set datestyle to ...", "set time zone ..."] ping=0, # ping MySQL服务端,检查是否服务可用。# 如:0 = None = never, 1 = default = whenever it is requested, 2 = when a cursor is created, 4 = when a query is executed, 7 = always host=\'127.0.0.1\', port=3306, user=\'root\', password=\'0000\', database=\'flask_code\', charset=\'utf8\' ) def connect(type=None): conn = POOL.connection() cursor = conn.cursor(cursor=type) return conn, cursor def connect_close(conn, cursor): cursor.close() conn.close() def fetchone(sql, arg=list()): conn, cursor = connect(type) cursor.execute(sql, arg) data = cursor.fetchone() connect_close(conn, cursor) return data def fetchall(sql, arg=list(), type=pymysql.cursors.DictCursor): conn, cursor = connect(type) cursor.execute(sql, arg) data = cursor.fetchall() connect_close(conn, cursor) return data def insert(sql, arg=list()): conn, cursor = connect() row = cursor.execute(sql, arg) conn.commit() connect_close(conn, cursor) return row
mysql_helper
sqlite
# -*- coding: utf-8 -*- """ @Datetime: 2019/1/31 @Author: Zhang Yafei """ import sqlite3 import settings import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) DB_DIR = os.path.join(BASE_DIR, \'data.db\') def connect(): \'\'\'连接数据库\'\'\' conn = sqlite3.connect(settings.DATABASES.get(\'sqlite3\')) # db不存在时将自动创建db cursor = conn.cursor() return conn, cursor def connect_close(conn, cursor): """关闭连接""" cursor.close() conn.close() def execute(sql, params=tuple()): conn, cursor = connect() cursor.execute(sql, params) # 执行这个语句 connect_close(conn, cursor) def fetchone(sql, params=tuple()): conn, cursor = connect() result = cursor.execute(sql, params) data = result.fetchone() connect_close(conn, cursor) return data def fetchall(sql, params=tuple()): conn, cursor = connect() results = cursor.execute(sql, params) data = results.fetchall() connect_close(conn, cursor) return data
sqlite3_helper
# -*- coding: utf-8 -*- """ @Datetime: 2019/1/31 @Author: Zhang Yafei """ import sqlite3 import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) DB_DIR = os.path.join(BASE_DIR, \'data.db\') class SqliteDB(object): def __init__(self): self.conn = sqlite3.connect(DB_DIR) # db不存在时将自动创建db self.cursor = self.conn.cursor() def close(self): self.cursor.close() self.conn.close() def execute(self, sql, params=tuple()): self.cursor.execute(sql, params) self.close() def fetchone(self, sql, params=tuple()): result = self.cursor.execute(sql, params) data = result.fetchone() self.close() return data def fetchall(self, sql, params=tuple()): results = self.cursor.execute(sql, params) data = results.fetchall() self.close() return data if __name__ == \'__main__\': sqlite = SqliteDB() # 1. 建表 sql = \'\'\'create table happy( username text, password text, id int)\'\'\' sqlite.execute(sql) # 2. 插入数据 sqlite.execute("INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) \ VALUES (4, \'Mark\', 25, \'Rich-Mond \', 65000.00 )") # 3. 更改数据 sqlite.execute("UPDATE COMPANY SET ID=99 WHERE ID=2") # 4. 删除表里面的数据 c.execute("DELETE FROM COMPANY WHERE ID=4") c.execute("DELETE FROM COMPANY WHERE ID=3") # 5. 查询 data = sqlite.fetchall(\'select * from label limit 1\') print(data) # 输出 \'\'\' [(\'盘龙云海(排毒养颜胶囊)\', 509881, \'广东深圳龙岗区/女\', \'昨天吃的,今天就拉肚子了。感觉肚子有点涨痛!不知道效果怎么样~~~~~\', \'昨天/吃/的/,/今天/就/拉肚子/SB了/。/感觉/肚子/PB有点/涨痛/SB!/不/知道/效果/怎么样/~/~/~/~/~\', \'2011-09-30 15:26:00\', \'http://ypk.39.net/509881/comment/k0_p...\', \'昨天/吃/的/,/今天/就/拉肚子/SB了/。/感觉/肚子/PB有点/涨痛/SB!/不/知道/效果/怎么样/~/~/~/~/~\', \'昨天/吃/的/,/今天/就/拉肚子/SB了/。/感觉/肚子/PB有点/涨痛/SB!/不/知道/效果/怎么样/~/~/~/~/~\')] \'\'\'
sqlite3_helper2
from DBUtils.PooledDB import PooledDB from settings import DATABASE import threading lock = threading.Lock() class SqliteHelper(object): def __init__(self, db_config): """ # sqlite3 # 连接数据库文件名,sqlite不支持加密,不使用用户名和密码 import sqlite3 config = {"database": "path/to/your/dbname.db"} pool = PooledDB(sqlite3, maxcached=50, maxconnections=1000, maxusage=1000, **config) # mysql import pymysql pool = PooledDB(pymysql,5,host=\'localhost\', user=\'root\',passwd=\'pwd\',db=\'myDB\',port=3306) #5为连接池里的最少连接数 # postgressql import psycopg2 POOL = PooledDB(creator=psycopg2, host="127.0.0.1", port="5342", user, password, database) # sqlserver import pymssql pool = PooledDB(creator=pymssql, host=host, port=port, user=user, password=password, database=database, charset="utf8") :param type: """ self.pool = PooledDB(**db_config) self.conn = self.pool.connection() self.cursor = self.conn.cursor() def connect(self): conn = self.pool.connection() cursor = self.conn.cursor() return conn, cursor @staticmethod def connect_close(conn, cursor): """关闭连接""" conn.close() cursor.close() def __del__(self): self.cursor.close() self.conn.close() def execute(self, sql, params=tuple()): try: lock.acquire(True) self.cursor.execute(sql, params) # 执行这个语句 self.conn.commit() lock.release() except Exception as e: print(e) def execute_many(self, sql, params=tuple()): try: lock.acquire(True) self.cursor.executemany(sql, params) self.conn.commit() lock.release() except Exception as e: print(e) def fetchone(self, sql, params=tuple()): try: lock.acquire(True) self.cursor.execute(sql, params) data = self.cursor.fetchone() lock.release() return data except Exception as e: print(e) def fetchall(self, sql, params=tuple()): try: lock.acquire(True) self.cursor.execute(sql, params) data = self.cursor.fetchall() lock.release() return data except Exception as e: print(e)
SqliteHelper3.py
mongodb
# -*- coding: utf-8 -*- """ @Datetime: 2019/1/31 @Author: Zhang Yafei """ import json import pymongo import pandas as pd class MongoPipeline(object): """ mongodb: save(self, data, collection): 将数据保存到数据库 read(self, data): 读取数据库中指定表格 insert(self, table, dict_data): 插入数据 delete(self, table, condition): 删除指定数据 update(self, table, condition, new_dict_data): 更新指定数据 dbFind(self, table, condition=None): 按条件查找 findAll(self, table): 查找全部 close(self): 关闭连接 """ def __init__(self, mongo_db, mongo_uri=\'localhost\'): self.mongo_uri = mongo_uri self.mongo_db = mongo_db self.client = pymongo.MongoClient(self.mongo_uri) self.db = self.client[self.mongo_db] def close(self): """ 关闭连接 :return: """ self.client.close() def save(self, data, collection): """ 将数据保存到数据库表 :param data: :param collection: :return: None """ self.collection = self.db[collection] try: if self.collection.insert(json.loads(data.T.to_json()).values()): print(\'mongodb insert {} sucess.\'.format(collection)) return except Exception as e: print(\'insert error:\', e) import traceback traceback.print_exc(e) def read(self, table): """ 读取数据库中的数据 :param table: :return: dataframe """ try: # 连接数据库 table = self.db[table] # 读取数据 data = pd.DataFrame(list(table.find())) return data except Exception as e: import traceback traceback.print_exc(e) def insert(self, table, dict_data): """ 插入 :param table: :param dict_data: :return: None """ try: self.db[table].insert(dict_data) print("插入成功") except Exception as e: print(e) def update(self,table, condition, new_dict_data): """ 更新 :param table: :param dict_data: :param new_dict_data: :return: None """ try: self.db[table].update(condition, new_dict_data) print("更新成功") except Exception as e: print(e) def delete(self,table, condition): """ 删除 :param table: :param dict_data: :return: None """ try: self.db[table].remove(condition) print("删除成功") except Exception as e: print(e) def dbFind(self, table, condition=None): """ 按条件查找 :param table: :param dict_data: :return: generator dict """ data = self.db[table].find(condition) for item in data: yield item def findAll(self, table): """ 查找全部 :param table: :return: generator dict """ for item in self.db[table].find(): yield item if __name__ == \'__main__\': mongo = MongoPipeline(\'flask\') # data = mongo.read(\'label\') # print(data.head()) condition = {"药品ID": 509881} data = mongo.dbFind(\'label\', condition) print(data) for i in data: print(i) # mongo.findAll()
mongo_helper
postgresql
# -*- coding: utf-8 -*- \'\'\' Datetime: 2019/10/24 author: Zhang Yafei description: python操作 postgressql数据库 操作流程是: 1)连接PostgreSQL并设定Cursor 2)执行SQL脚本 #有几点需要注意 - sql脚本必须以\';\'结尾,不可以省略 - 不管sql中有几个参数,都需要用%s代替,只有%s, 不管值是字符还是数字, 一律%s. - 第二个参数中,一定要传入元组,上述例子中(5)是不行的 - 执行完INSERT, UPDATE, DELETE这样的sql脚本后, 需要conn.commit()提交一下, 才会把数据提交到数据库当中. 3)得到查询结果 可以采用fetchone(), fetchall()和fetchmany() 三种方式。fetchone返回一个tuple或者None, fetchall返回一个 list of tuple,如果没有结果则返回一个空的tuple。fetchmany返回list of tuple, list的长度由size参数决定, size的默认值是cursor.arraysize, 如果没有结果可以返回,那么返回一个空的list。 \'\'\' import psycopg2 def connect(): conn = psycopg2.connect("dbname=xiaomuchong user=postgres password=0000 host=localhost port=5432") cur = conn.cursor() return conn, cur def connect_close(conn, cursor): """关闭连接""" cursor.close() conn.close() def execute(sql, params=tuple()): conn, cursor = connect() cursor.execute(sql, params) # 执行这个语句 conn.commit() connect_close(conn, cursor) def fetchone(sql, params=tuple()): conn, cursor = connect() result = cursor.execute(sql, params) data = result.fetchone() connect_close(conn, cursor) return data def fetchall(sql, params=tuple()): conn, cursor = connect() cursor.execute(sql, params) data = cursor.fetchall() connect_close(conn, cursor) return data if __name__ == "__main__": # create_sql = "CREATE TABLE Employee (name varchar(80), address varchar(80),age int, date date)" # execute(create_sql) # execute("INSERT INTO Employee VALUES(\'Gopher\', \'China Beijing\', 100, \'2017-05-27\')") # execute("INSERT INTO Employee VALUES(\'Zhang\', \'China jincheng\', 24, \'2019-10-24\')") # rows = fetchall("SELECT * FROM Employee;") # for row in rows: # print(\'name=\' + str(row[0]) + \' address=\' + str(row[1]) + # \' age=\' + str(row[2]) + \' date=\' + str(row[3])) # execute("UPDATE Employee SET age=12 WHERE name=\'Gopher\'") execute("DELETE FROM Employee WHERE name=\'Gopher\'")
postgresql_helper
# -*- coding: utf-8 -*- \'\'\' Datetime: 2019/10/24 author: Zhang Yafei description: python操作 postgressql数据库 操作流程是: 1)连接PostgreSQL并设定Cursor 2)执行SQL脚本 #有几点需要注意 - sql脚本必须以\';\'结尾,不可以省略 - 不管sql中有几个参数,都需要用%s代替,只有%s, 不管值是字符还是数字, 一律%s. - 第二个参数中,一定要传入元组,上述例子中(5)是不行的 - 执行完INSERT, UPDATE, DELETE这样的sql脚本后, 需要conn.commit()提交一下, 才会把数据提交到数据库当中. 3)得到查询结果 可以采用fetchone(), fetchall()和fetchmany() 三种方式。fetchone返回一个tuple或者None, fetchall返回一个 list of tuple,如果没有结果则返回一个空的tuple。fetchmany返回list of tuple, list的长度由size参数决定, size的默认值是cursor.arraysize, 如果没有结果可以返回,那么返回一个空的list。 \'\'\' import psycopg2 class PostgresSql(object): def __init__(self, dbname, user, password, host=\'localhost\', port=5432): self.conn = psycopg2.connect( f"dbname={dbname} user={user} password={password} host={host} port={port}") self.cursor = self.conn.cursor() def connect_close(self): """关闭连接""" self.cursor.close() self.conn.close() def execute(self, sql, params=tuple()): self.cursor.execute(sql, params) # 执行这个语句 self.conn.commit() def fetchone(self, sql, params=tuple()): self.cursor.execute(sql, params) data = self.cursor.fetchone() return data def fetchall(self, sql, params=tuple()): self.cursor.execute(sql, params) data = self.cursor.fetchall() return data if __name__ == "__main__": postgres = PostgresSql(dbname=\'xiaomuchong\', user=\'postgres\', password=\'0000\', host=\'localhost\', port=\'5432\') # create_sql = "CREATE TABLE Employee1 (name varchar(80), address varchar(80),age int, date date)" # postgres.execute(create_sql) # postgres.execute("INSERT INTO Employee1 VALUES(\'Gopher\', \'China Beijing\', 100, \'2017-05-27\')") # postgres.execute("INSERT INTO Employee1 VALUES(\'Zhang\', \'China jincheng\', 24, \'2019-10-24\')") rows = postgres.fetchall("SELECT * FROM Employee1;") for row in rows: print(\'name=\' + str(row[0]) + \' address=\' + str(row[1]) + \' age=\' + str(row[2]) + \' date=\' + str(row[3])) postgres.execute("UPDATE Employee1 SET age=12 WHERE name=\'Gopher\'") postgres.execute("DELETE FROM Employee1 WHERE name=\'Gopher\'") rows = postgres.fetchall("SELECT * FROM Employee1;") for row in rows: print(\'name=\' + str(row[0]) + \' address=\' + str(row[1]) + \' age=\' + str(row[2]) + \' date=\' + str(row[3])) postgres.connect_close()
postgresql_helper_class
from DBUtils.PooledDB import PooledDB class DBPoolHelper(object): def __init__(self, dbname, user=None, password=None, db_type=\'postgressql\', host=\'localhost\', port=5432): """ # sqlite3 # 连接数据库文件名,sqlite不支持加密,不使用用户名和密码 import sqlite3 config = {"datanase": "path/to/your/dbname.db"} pool = PooledDB(sqlite3, maxcached=50, maxconnections=1000, maxusage=1000, **config) # mysql import pymysql pool = PooledDB(pymysql,5,host=\'localhost\', user=\'root\',passwd=\'pwd\',db=\'myDB\',port=3306) #5为连接池里的最少连接数 # postgressql import psycopg2 POOL = PooledDB(creator=psycopg2, host="127.0.0.1", port="5342", user, password, database) # sqlserver import pymssql pool = PooledDB(creator=pymssql, host=host, port=port, user=user, password=password, database=database, charset="utf8") :param type: """ if db_type == \'postgressql\': import psycopg2 pool = PooledDB(creator=psycopg2, host=host, port=port, user=user, password=password, database=dbname) elif db_type == \'mysql\': import pymysql pool = PooledDB(pymysql, 5, host=\'localhost\', user=\'root\', passwd=\'pwd\', db=\'myDB\', port=3306) # 5为连接池里的最少连接数 elif db_type == \'sqlite\': import sqlite3 config = {"database": dbname} pool = PooledDB(sqlite3, maxcached=50, maxconnections=1000, maxusage=1000, **config) else: raise Exception(\'请输入正确的数据库类型, db_type="postgresql" or db_type="mysql" or db_type="sqlite"\') self.conn = pool.connection() self.cursor = self.conn.cursor() def connect_close(self): """关闭连接""" self.cursor.close() self.conn.close() def execute(self, sql, params=tuple()): self.cursor.execute(sql, params) # 执行这个语句 self.conn.commit() def execute_many(self, sql, params=tuple()): self.cursor.executemany(sql, params) self.conn.commit() def fetchone(self, sql, params=tuple()): self.cursor.execute(sql, params) data = self.cursor.fetchone() return data def fetchall(self, sql, params=tuple()): self.cursor.execute(sql, params) data = self.cursor.fetchall() return data
postgresql_helper3.py
redis
def redis_init(): settings = get_project_settings() if settings["REDIS_PARAMS"]: pool = ConnectionPool(host=settings["REDIS_HOST"], port=settings["REDIS_PORT"], password=settings["REDIS_PARAMS"][\'password\']) else: pool = ConnectionPool(host=settings["REDIS_HOST"], port=settings["REDIS_PORT"]) conn = Redis(connection_pool=pool) return conn if __name__ == \'__main__\': redis_conn = redis_init()
redis_helper.py
DBUtils
# -*- coding: utf-8 -*- """ Datetime: 2020/07/02 Author: Zhang Yafei Description: """ import time from functools import wraps from DBUtils.PooledDB import PooledDB def timeit(func): """ 装饰器: 判断函数执行时间 :param func: :return: """ @wraps(func) def inner(*args, **kwargs): start = time.time() ret = func(*args, **kwargs) end = time.time() - start if end < 60: print(f\'花费时间:\t{round(end, 2)}秒\') else: min, sec = divmod(end, 60) print(f\'花费时间\t{round(min)}分\t{round(sec, 2)}秒\') return ret return inner class DBPoolHelper(object): def __init__(self, dbname, user=None, password=None, db_type=\'postgressql\', host=\'localhost\', port=5432): """ # sqlite3 # 连接数据库文件名,sqlite不支持加密,不使用用户名和密码 import sqlite3 config = {"datanase": "path/to/your/dbname.db"} pool = PooledDB(sqlite3, maxcached=50, maxconnections=1000, maxusage=1000, **config) # mysql import pymysql pool = PooledDB(pymysql,5,host=\'localhost\', user=\'root\',passwd=\'pwd\',db=\'myDB\',port=3306) #5为连接池里的最少连接数 # postgressql import psycopg2 POOL = PooledDB(creator=psycopg2, host="127.0.0.1", port="5342", user, password, database) # sqlserver import pymssql pool = PooledDB(creator=pymssql, host=host, port=port, user=user, password=password, database=database, charset="utf8") :param type: """ if db_type == \'postgressql\': import psycopg2 pool = PooledDB(creator=psycopg2, host=host, port=port, user=user, password=password, database=dbname) elif db_type == \'mysql\': import pymysql pool = PooledDB(pymysql, 5, host=\'localhost\', user=\'root\', passwd=\'pwd\', db=\'myDB\', port=3306) # 5为连接池里的最少连接数 elif db_type == \'sqlite\': import sqlite3 config = {"database": dbname} pool = PooledDB(sqlite3, maxcached=50, maxconnections=1000, maxusage=1000, **config) else: raise Exception(\'请输入正确的数据库类型, db_type="postgresql" or db_type="mysql" or db_type="sqlite"\') self.conn = pool.connection() self.cursor = self.conn.cursor() def connect_close(self): """关闭连接""" self.cursor.close() self.conn.close() def execute(self, sql, params=tuple()): self.cursor.execute(sql, params) # 执行这个语句 self.conn.commit() def execute_many(self, sql, params=tuple()): self.cursor.executemany(sql, params) self.conn.commit() def fetchone(self, sql, params=tuple()): self.cursor.execute(sql, params) data = self.cursor.fetchone() return data def fetchall(self, sql, params=tuple()): self.cursor.execute(sql, params) data = self.cursor.fetchall() return data
DBHelper.py
pandas链接数据库
import pandas as pd from sqlalchemy import create_engine def pandas_db_helper(): """ \'postgresql://postgres:0000@127.0.0.1:5432/xiaomuchong\' "mysql+pymysql://root:0000@127.0.0.1:3306/srld?charset=utf8mb4" "sqlite: ///sqlite3.db" """ engine = create_engine( \'postgresql://postgres:0000@127.0.0.1:5432/xiaomuchong\') conn = engine.connect() return conn if __name__ == \'__main__\': db = pandas_db_helper() data = pd.read_sql_table("team", con=db, index_col="board_id") print(data)
pandas_db_helper.py
实战项目
1.pandas+mysql
# -*- coding: utf-8 -*- """ @Datetime: 2018/12/26 @Author: Zhang Yafei """ import pymysql from DBUtils.PooledDB import PooledDB import pandas as pd from pymysql.err import InternalError import numpy as np POOL = PooledDB( creator=pymysql, # 使用链接数据库的模块 maxconnections=6, # 连接池允许的最大连接数,0和None表示不限制连接数 mincached=2, # 初始化时,链接池中至少创建的空闲的链接,0表示不创建 maxcached=5, # 链接池中最多闲置的链接,0和None不限制 maxshared=3, # 链接池中最多共享的链接数量,0和None表示全部共享。PS: 无用,因为pymysql和MySQLdb等模块的 threadsafety都为1,所有值无论设置为多少,_maxcached永远为0,所以永远是所有链接都共享。 blocking=True, # 连接池中如果没有可用连接后,是否阻塞等待。True,等待;False,不等待然后报错 maxusage=None, # 一个链接最多被重复使用的次数,None表示无限制 setsession=[], # 开始会话前执行的命令列表。如:["set datestyle to ...", "set time zone ..."] ping=0, # ping MySQL服务端,检查是否服务可用。# 如:0 = None = never, 1 = default = whenever it is requested, 2 = when a cursor is created, 4 = when a query is executed, 7 = always host=\'127.0.0.1\', port=3306, user=\'root\', password=\'0000\', database=\'srld\', charset=\'utf8mb4\' ) def connect(type=None): conn = POOL.connection() cursor = conn.cursor(cursor=type) return conn, cursor def connect_close(conn, cursor): cursor.close() conn.close() def fetchone(sql, arg=list()): conn, cursor = connect(type) cursor.execute(sql, arg) data = cursor.fetchone() connect_close(conn, cursor) return data def fetchall(sql, arg=list(), type=pymysql.cursors.DictCursor): conn, cursor = connect(type) cursor.execute(sql, arg) data = cursor.fetchall() connect_close(conn, cursor) return data def insert(sql, arg=list()): conn, cursor = connect() row = cursor.execute(sql, arg) conn.commit() connect_close(conn, cursor) return row def insert_sql(row): pmid_doi, author, journal, year, title, abstract = row sql = """ insert into pubmed(PMID_DOI,author,journal,year,title,abstract) values(%s, %s, %s, %s, %s, %s) """ try: insert(sql, arg=[pmid_doi, author, journal, year, title, abstract]) except InternalError: # print(pmid_doi, author, journal, year, title, abstract) print(author, type(author), np.isnan(author)) # pmid_doi = None if np.isnan(pmid_doi) else pmid_doi # print(author, type(author), np.isnan(author)) author = None if np.isnan(author) else author print(author) # journal = None if np.isnan(journal) else journa # year = None if np.isnan(year) else year # title = None if np.isnan(title) else title # abstract = None if np.isnan(abstract) else abstract # print(author) # print(pmid_doi, author, journal, year, title, abstract) def main(): df = pd.read_csv(\'xml副本/documents_1.txt\', delimiter=\'\t\', header=None) df.fillna(0, inplace=True) df.apply(insert_sql, axis=1) if __name__ == "__main__": main() # insert(\'\'\'insert into pubmed(PMID_DOI,author,journal,year,title,abstract) values(\'PMID:28231184|DOI:10.3390/foods5040089\', \'Moreira-Ascarrunz, Sergio Daniel; Larsson, Hans; Prieto-Linde, Maria Luisa; Johansson, Eva\', \'Foods (Basel, Switzerland)\', \'2016\', \'Mineral Nutritional Yield and Nutrient Density of Locally Adapted Wheat Genotypes under Organic Production.\',\'The aim of the present investigation was to investigate the nutritional yield, nutrient density, stability, and adaptability of organically produced wheat for sustainable and nutritional high value food production. This study evaluated the nutritional yield of four minerals (Fe, Zn, Cu, and Mg) in 19 wheat genotypes, selected as being locally adapted under organic agriculture conditions. The new metric of nutritional yield was calculated for each genotype and they were evaluated for stability using the Additive Main effects and Multiplicative Interaction (AMMI) stability analysis and for genotypic value, stability, and adaptability using the Best Linear Unbiased Prediction (BLUP procedure). The results indicated that there were genotypes suitable for production under organic agriculture conditions with satisfactory yields (>4000 kg·ha(-1)). Furthermore, these genotypes showed high nutritional yield and nutrient density for the four minerals studied. Additionally, since these genotypes were stable and adaptable over three environmentally different years, they were designated "balanced genotypes" for the four minerals and for the aforementioned characteristics. Selection and breeding of such "balanced genotypes" may offer an alternative to producing nutritious food under low-input agriculture conditions. Furthermore, the type of evaluation presented here may also be of interest for implementation in research conducted in developing countries, following the objectives of producing enough nutrients for a growing population.\')\'\'\')
pandas_mysql1.py
# -*- coding: utf-8 -*- \'\'\' Datetime: 2019/11/07 author: Zhang Yafei description: \'\'\' from sqlalchemy import create_engine import pandas as pd import os from multiprocessing import Pool from mysql_helper import fetchall, insert engine = create_engine( "mysql+pymysql://root:0000@127.0.0.1:3306/srld?charset=utf8mb4", max_overflow=0, # 超过连接池大小外最多创建的连接 pool_size=5, # 连接池大小 pool_timeout=30, # 池中没有线程最多等待的时间,否则报错 pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置) ) conn = engine.connect() def filter_file(file_list): sql = """ select file_path from data_records """ file_of_database = {file[0] for file in fetchall(sql, type=None)} files = file_list - file_of_database print(f\'共{len(file_list)}\t已经导入{len(file_of_database)}\t还需导入:{len(files)}\') return files def main(file_path): table_name = \'pubmed\' # df = pd.read_csv(\'xml副本/documents_1.txt\',delimiter=\'\t\', header=None) try: df = pd.read_csv(file_path, delimiter=\'\t\', header=None) df.columns = [\'pmid_doi\', \'author\', \'journal\', \'year\', \'title\', \'abstract\'] df[\'path\'] = file_path df[\'year\'] = \'2017\' df.to_sql(table_name, conn, if_exists=\'append\', index=False) insert_sql = """ insert into data_records(file_path) values(%s) """ insert(sql=insert_sql, arg=[file_path]) print(f\'{file_path}\t导入成功\') except Exception as e: # insert_sql = """ insert into data_records(file_path, state, remarks) values(%s,%s,%s) """ # print(f\'{file_path}文件导入失败\') # insert(sql=insert_sql, arg=[file_path,0,str(e)]) print(f\'{file_path}文件导入失败\') if __name__ == "__main__": dir__names = [\'data处理/800w-1600w副本\', \'data处理/1600w-2600w副本\', \'data处理/xmls_news\'] # for dir_name in dir__names: dir_name = dir__names[2] file_list = {os.path.join(dir_name, file) for file in os.listdir(dir_name)} file_list = filter_file(file_list) for file in file_list: main(file_path=file) """ pool = Pool() pool.map(main, file_list) pool.join() pool.close() """
pandas+mysql2
2.药物数据导入
from sqlalchemy import create_engine import pandas as pd import os engine = create_engine( "mysql+pymysql://root:0000@127.0.0.1:3306/drug?charset=utf8", max_overflow=0, # 超过连接池大小外最多创建的连接 pool_size=5, # 连接池大小 pool_timeout=30, # 池中没有线程最多等待的时间,否则报错 pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置) ) conn = engine.connect() def main(file_path, table_name=\'drugbank\'): df = pd.read_table(file_path, header=None)[:900] df.columns = [\'drugbank_id\', \'drug_name\'] df[\'drugbank_id\'] = [f\'DB1{num}\' for num in range(4195,5095)] # print(df) df.to_sql(table_name, conn, if_exists=\'append\',index=False) print(f\'{file_path}\t导入成功\') if __name__ == "__main__": main(file_path=\'drugs.txt\')
drugbank_to_Sql.py
3.疾病数据库
# -*- coding: utf-8 -*- \'\'\' Datetime: 2019/11/08 author: Zhang Yafei description: \'\'\' from sqlalchemy import create_engine import pandas as pd import os engine = create_engine( "mysql+pymysql://root:0000@127.0.0.1:3306/disease?charset=utf8mb64", max_overflow=0, # 超过连接池大小外最多创建的连接 pool_size=5, # 连接池大小 pool_timeout=30, # 池中没有线程最多等待的时间,否则报错 pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置) ) conn = engine.connect() def main(file_path, table_name=\'disease\'): df = pd.read_excel(file_path, index_col=\'#\') # df.columns = [\'PMID_DOI\', \'author\', \'journal\', \'year\', \'title\', \'abstract\'] df.to_sql(table_name, conn, if_exists=\'append\',index=False) print(f\'{file_path}\t导入成功\') if __name__ == "__main__": file_list = [] for base_path,dirs, files in os.walk(\'MalaCards\'): # print(base_path, file_path) for file in files: file_list.append(os.path.join(base_path, file)) for file in file_list: main(file_path=file)
diease_to_sql.py
4.科研文献数据库
# -*- coding: utf-8 -*- """ @Datetime: 2018/12/26 @Author: Zhang Yafei """ import pymysql from DBUtils.PooledDB import PooledDB import pandas as pd from pymysql.err import InternalError import numpy as np POOL = PooledDB( creator=pymysql, # 使用链接数据库的模块 maxconnections=6, # 连接池允许的最大连接数,0和None表示不限制连接数 mincached=2, # 初始化时,链接池中至少创建的空闲的链接,0表示不创建 maxcached=5, # 链接池中最多闲置的链接,0和None不限制 maxshared=3, # 链接池中最多共享的链接数量,0和None表示全部共享。PS: 无用,因为pymysql和MySQLdb等模块的 threadsafety都为1,所有值无论设置为多少,_maxcached永远为0,所以永远是所有链接都共享。 blocking=True, # 连接池中如果没有可用连接后,是否阻塞等待。True,等待;False,不等待然后报错 maxusage=None, # 一个链接最多被重复使用的次数,None表示无限制 setsession=[], # 开始会话前执行的命令列表。如:["set datestyle to ...", "set time zone ..."] ping=0, # ping MySQL服务端,检查是否服务可用。# 如:0 = None = never, 1 = default = whenever it is requested, 2 = when a cursor is created, 4 = when a query is executed, 7 = always host=\'127.0.0.1\', port=3306, user=\'root\', password=\'0000\', database=\'srld\', charset=\'utf8mb4\' ) def connect(type=None): conn = POOL.connection() cursor = conn.cursor(cursor=type) return conn, cursor def connect_close(conn, cursor): cursor.close() conn.close() def fetchone(sql, arg=list()): conn, cursor = connect(type) cursor.execute(sql, arg) data = cursor.fetchone() connect_close(conn, cursor) return data def fetchall(sql, arg=list(), type=pymysql.cursors.DictCursor): conn, cursor = connect(type) cursor.execute(sql, arg) data = cursor.fetchall() connect_close(conn, cursor) return data def insert(sql, arg=list()): conn, cursor = connect() row = cursor.execute(sql, arg) conn.commit() connect_close(conn, cursor) return row def insert_sql(row): pmid_doi, author, journal, year, title, abstract = row sql = """ insert into pubmed(PMID_DOI,author,journal,year,title,abstract) values(%s, %s, %s, %s, %s, %s) """ try: insert(sql, arg=[pmid_doi, author, journal, year, title, abstract]) except InternalError: # print(pmid_doi, author, journal, year, title, abstract) print(author, type(author), np.isnan(author)) # pmid_doi = None if np.isnan(pmid_doi) else pmid_doi # print(author, type(author), np.isnan(author)) author = None if np.isnan(author) else author print(author) # journal = None if np.isnan(journal) else journa # year = None if np.isnan(year) else year # title = None if np.isnan(title) else title # abstract = None if np.isnan(abstract) else abstract # print(author) # print(pmid_doi, author, journal, year, title, abstract) def main(): df = pd.read_csv(\'xml副本/documents_1.txt\', delimiter=\'\t\', header=None) df.fillna(0, inplace=True) df.apply(insert_sql, axis=1) if __name__ == "__main__": main() # insert(\'\'\'insert into pubmed(PMID_DOI,author,journal,year,title,abstract) values(\'PMID:28231184|DOI:10.3390/foods5040089\', \'Moreira-Ascarrunz, Sergio Daniel; Larsson, Hans; Prieto-Linde, Maria Luisa; Johansson, Eva\', \'Foods (Basel, Switzerland)\', \'2016\', \'Mineral Nutritional Yield and Nutrient Density of Locally Adapted Wheat Genotypes under Organic Production.\',\'The aim of the present investigation was to investigate the nutritional yield, nutrient density, stability, and adaptability of organically produced wheat for sustainable and nutritional high value food production. This study evaluated the nutritional yield of four minerals (Fe, Zn, Cu, and Mg) in 19 wheat genotypes, selected as being locally adapted under organic agriculture conditions. The new metric of nutritional yield was calculated for each genotype and they were evaluated for stability using the Additive Main effects and Multiplicative Interaction (AMMI) stability analysis and for genotypic value, stability, and adaptability using the Best Linear Unbiased Prediction (BLUP procedure). The results indicated that there were genotypes suitable for production under organic agriculture conditions with satisfactory yields (>4000 kg·ha(-1)). Furthermore, these genotypes showed high nutritional yield and nutrient density for the four minerals studied. Additionally, since these genotypes were stable and adaptable over three environmentally different years, they were designated "balanced genotypes" for the four minerals and for the aforementioned characteristics. Selection and breeding of such "balanced genotypes" may offer an alternative to producing nutritious food under low-input agriculture conditions. Furthermore, the type of evaluation presented here may also be of interest for implementation in research conducted in developing countries, following the objectives of producing enough nutrients for a growing population.\')\'\'\')
mysql_helper.py
# -*- coding: utf-8 -*- \'\'\' Datetime: 2019/11/07 author: Zhang Yafei description: \'\'\' from sqlalchemy import create_engine import pandas as pd import os from multiprocessing import Pool from mysql_helper import fetchall, insert engine = create_engine( "mysql+pymysql://root:0000@127.0.0.1:3306/srld?charset=utf8mb4", max_overflow=0, # 超过连接池大小外最多创建的连接 pool_size=5, # 连接池大小 pool_timeout=30, # 池中没有线程最多等待的时间,否则报错 pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置) ) conn = engine.connect() def filter_file(file_list): sql = """ select file_path from data_records """ file_of_database = {file[0] for file in fetchall(sql, type=None)} files = file_list - file_of_database print(f\'共{len(file_list)}\t已经导入{len(file_of_database)}\t还需导入:{len(files)}\') return files def main(file_path): table_name = \'pubmed\' # df = pd.read_csv(\'xml副本/documents_1.txt\',delimiter=\'\t\', header=None) try: df = pd.read_csv(file_path, delimiter=\'\t\', header=None) df.columns = [\'pmid_doi\', \'author\', \'journal\', \'year\', \'title\', \'abstract\'] df[\'path\'] = file_path df[\'year\'] = \'2017\' df.to_sql(table_name, conn, if_exists=\'append\', index=False) insert_sql = """ insert into data_records(file_path) values(%s) """ insert(sql=insert_sql, arg=[file_path]) print(f\'{file_path}\t导入成功\') except Exception as e: # insert_sql = """ insert into data_records(file_path, state, remarks) values(%s,%s,%s) """ # print(f\'{file_path}文件导入失败\') # insert(sql=insert_sql, arg=[file_path,0,str(e)]) print(f\'{file_path}文件导入失败\') if __name__ == "__main__": dir__names = [\'data处理/800w-1600w副本\', \'data处理/1600w-2600w副本\', \'data处理/xmls_news\'] # for dir_name in dir__names: dir_name = dir__names[2] file_list = {os.path.join(dir_name, file) for file in os.listdir(dir_name)} file_list = filter_file(file_list) for file in file_list: main(file_path=file) """ pool = Pool() pool.map(main, file_list) pool.join() pool.close() """
pubmed_data_to_sql.py
# -*- coding: utf-8 -*- \'\'\' Datetime: 2019/11/08 author: Zhang Yafei description: \'\'\' from sqlalchemy import create_engine import pandas as pd import os from mysql_helper import fetchall, insert engine = create_engine( "mysql+pymysql://root:0000@127.0.0.1:3306/srld?charset=utf8mb4", max_overflow=0, # 超过连接池大小外最多创建的连接 pool_size=5, # 连接池大小 pool_timeout=30, # 池中没有线程最多等待的时间,否则报错 pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置) ) conn = engine.connect() def filter_file(file_list): file_list = set(file_list) sql = """ select path from sci_records """ file_of_database = {file[0] for file in fetchall(sql, type=None)} files = file_list - file_of_database print(f\'共{len(file_list)}\t已经导入{len(file_of_database)}\t还需导入:{len(files)}\') return files def main(file_path, table_name=\'sci_china\'): try: df = pd.read_csv(file_path, delimiter=\'\t\', encoding=\'utf-16\', error_bad_lines=False) df = df[[\'PT\', \'CA\', \'TI\',\'HO\',\'ID\', \'AB\',\'FX\',\'PD\',\'PY\',\'VL\',\'AR\']] df[\'path\'] = \'China/2013\' df.rename({\'PT\': \'AU\', \'CA\': \'TI\', \'TI\':\'SO\',\'HO\':\'DE\',\'ID\':\'AB\',\'AB\':\'C1\',\'FX\':\'CR\', \'PD\':\'PY\', \'PY\':\'VL\',\'VL\':\'IS\',\'AR\':\'DI\'}, axis=1, inplace=True) df[\'PY\'] = \'2013\' # print(df.head()) df.to_sql(table_name, conn, if_exists=\'append\',index=False) # insert_sql = """ insert into sci_records(path) values(%s) """ # insert(sql=insert_sql, arg=[file_path]) print(f\'{file_path}\t导入成功\') except Exception as e: print(f\'{file_path}\t导入失败\') if __name__ == "__main__": file_list = [] for base_path,dirs, files in os.walk(\'China\'): for file in files: if file.endswith(\'.txt\'): file_list.append(os.path.join(base_path, file)) # main(file_list[0]) # file_list = filter_file(file_list) file_list = file_list[2000:2080] for file in file_list: main(file_path=file)
sci_data_to_sql.py
5.基因数据导入
# -*- coding: utf-8 -*- \'\'\' Datetime: 2019/11/08 author: Zhang Yafei description: \'\'\' from sqlalchemy import create_engine import pandas as pd import os engine = create_engine( "mysql+pymysql://root:0000@127.0.0.1:3306/gene?charset=utf8", max_overflow=0, # 超过连接池大小外最多创建的连接 pool_size=5, # 连接池大小 pool_timeout=30, # 池中没有线程最多等待的时间,否则报错 pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置) ) conn = engine.connect() def main(file_path, table_name=\'arrayexpress\'): # try: df = pd.read_csv(file_path, delimiter=\'\t\', error_bad_lines=False, encoding=\'ISO8859-1\') df.to_sql(table_name, conn, if_exists=\'append\',index=False) # insert_sql = """ insert into sci_records(path) values(%s) """ # insert(sql=insert_sql, arg=[file_path]) print(f\'{file_path}\t导入成功\') # except Exception as e: # print(f\'{file_path}\t导入失败\') if __name__ == "__main__": file_list = [] for base_path,dirs, files in os.walk(\'ArrayExpress数据\'): for file in files: if file.endswith(\'.txt\'): file_list.append(os.path.join(base_path, file)) # file_list = filter_file(file_list) for file in file_list: main(file_path=file)
arrayexpress_to_sql.py
# -*- coding: utf-8 -*- \'\'\' Datetime: 2019/11/08 author: Zhang Yafei description: \'\'\' from sqlalchemy import create_engine import pandas as pd import os engine = create_engine( "mysql+pymysql://root:0000@127.0.0.1:3306/zacopride?charset=utf8", max_overflow=0, # 超过连接池大小外最多创建的连接 pool_size=5, # 连接池大小 pool_timeout=30, # 池中没有线程最多等待的时间,否则报错 pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置) ) conn = engine.connect() def main(file_path): table_name = file_path.split(\'\\\')[-1].strip(\'.csv\').strip().replace(\' \', \'_\').lower() df = pd.read_csv(file_path) df.to_sql(table_name, conn, if_exists=\'append\',index=False) print(f\'{file_path}\t导入成功\') if __name__ == "__main__": file_list = [] for base_path,dirs, files in os.walk(\'zacopride\'): # print(base_path, file_path) for file in files: file_list.append(os.path.join(base_path, file)) # print(file_list) # main(file_list[0]) for file in file_list: main(file_path=file)
gene_to_sql.py
# -*- coding: utf-8 -*- \'\'\' Datetime: 2019/11/08 author: Zhang Yafei description: \'\'\' from sqlalchemy import create_engine import pandas as pd import os engine = create_engine( "mysql+pymysql://root:0000@127.0.0.1:3306/gene?charset=utf8", max_overflow=0, # 超过连接池大小外最多创建的连接 pool_size=5, # 连接池大小 pool_timeout=30, # 池中没有线程最多等待的时间,否则报错 pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置) ) conn = engine.connect() def main(file_path, table_name=\'series\'): # try: df = pd.read_csv(file_path, error_bad_lines=False) # print(df.columns) # df[\'path\'] = file_path df.to_sql(table_name, conn, if_exists=\'append\',index=False) # insert_sql = """ insert into sci_records(path) values(%s) """ # insert(sql=insert_sql, arg=[file_path]) print(f\'{file_path}\t导入成功\') # except Exception as e: # print(f\'{file_path}\t导入失败\') if __name__ == "__main__": file_list = [] for base_path,dirs, files in os.walk(\'series\'): for file in files: if file.endswith(\'.csv\'): file_list.append(os.path.join(base_path, file)) for file in file_list: main(file_path=file)
series_to_sql.py