有时候graph建好后,我们并不清除该graph内节点的,边的信息,这就需要调用函数去查看了.

目录:


注意:如果代码出现找不库,请返回第一个教程,把库文件导入.

6.查看Graph的信息

6.1查看graph内节点,边的数量

  1. #生成graph 


  2. G=nx.path_graph(8) 


  3. nx.draw(G,with_labels=True) 


  4. plt.axis(\’on\’) 


  5. plt.xticks([]) 


  6. plt.yticks([]) 


  7. plt.show() 


  8.  


  9. #查看节点和边的情况 


  10. print(\’number of nodes\’,G.number_of_nodes()) 


  11. print(\’number of edges\’,G.number_of_edges()) 


enter description here

例子图

输出:

  1. number of nodes 8 


  2. number of edges 7 


6.2查看graph中的点,边

  1. #输出graph所有的点和边 


  2. print(\’all nodes of Graph\’,G.nodes()) 


  3. print(\’all edges of Graph\’,G.edges()) 


输出:

  1. all nodes of Graph [0, 1, 2, 3, 4, 5, 6, 7] 


  2. all edges of Graph [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7)] 


6.3查看某些节点的度

  1. #查看节点2和3的度 


  2. print(\’degree of some nodes\’,G.degree([2, 3])) 


输出:

  1. degree of some nodes [(2, 2), (3, 2)] 


6.4查看节点&边信息

  1. #设置一些节点信息 


  2. G.nodes[1][\’room\’] = 714 


  3. G.nodes[1][\’color\’] = \’b\’ 


  4. #设置一些边信息 


  5. G[1][2][\’weight\’] = 4.7 


  6. G[1][2][\’color\’] = “blue” 


  7.  


  8. print(\’imformation of one nodes\’,G.nodes[1]) 


  9. print(\’imformation of all nodes\’,G.nodes.data()) 


  10.  


  11. print(\’imformation of all nodes\’,G.edges.data()) #边不支持[x]这样的下标访问 


输出:

  1. imformation of one nodes {\’room\’: 714, \’color\’: \’b\’} 


  2. imformation of all nodes [(0, {}), (1, {\’room\’: 714, \’color\’: \’b\’}), (2, {}), (3, {}), (4, {}), (5, {}), (6, {}), (7, {})] 


  3. imformation of all nodes [(0, 1, {}), (1, 2, {\’weight\’: 4.7, \’color\’: \’blue\’}), (2, 3, {}), (3, 4, {}), (4, 5, {}), (5, 6, {}), (6, 


7, {})]

6.5遍历一个有权图

  1. #定义一个有权无向图 


  2. FG = nx.Graph() 


  3. FG.add_weighted_edges_from([(1, 2, 0.125), (1, 3, 0.75), (2, 4, 1.2), (3, 4, 0.375)]) 


  4.  


  5. #遍历邻接矩阵 


  6. for n, nbrs in FG.adj.items(): 


  7. for nbr, eattr in nbrs.items(): 


  8. wt = eattr[\’weight\’] 


  9. #权重小于0.5的输出 


  10. if wt < 0.5:  


  11. print(\’way1-(%d, %d, %.3f)\’ % (n, nbr, wt)) 


  12.  


  13. #遍历所有边 


  14. for (u, v, wt) in FG.edges.data(\’weight\’): 


  15. #权重小于0.5的输出 


  16. if wt < 0.5:  


  17. print(\’way2-(%d, %d, %.3f)\’ % (u, v, wt)) 


输出:

  1. way1-(1, 2, 0.125) 


  2. way1-(2, 1, 0.125) 


  3. way1-(3, 4, 0.375) 


  4. way1-(4, 3, 0.375) 


  5. way2-(1, 2, 0.125) 


  6. way2-(3, 4, 0.375) 


版权声明:本文为wushaogui原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/wushaogui/p/9203947.html