Python数据分析工具包:Pandas
Python数据分析工具包:Pandas – OPEN 开发经验库
Python数据分析工具包:Pandas
您的评价: 力荐 Python Data Analysis Library 或 pandas 是连接 SciPy 和 NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。Comma-separated values (CSV) 文件表示在有关各方之间分发数据的最常见的方法之一。Pandas 提供了一种优化库功能来读写多种文件格式,包括 CSV 和高效的 HDF5 格式。
- A fast and efficient DataFrame object for data manipulation with integrated indexing;
- Tools for reading and writing data between in-memory data structures and different formats: CSV and text files, Microsoft Excel, SQL databases, and the fast HDF5 format;
- Intelligent data alignment and integrated handling of missing data: gain automatic label-based alignment in computations and easily manipulate messy data into an orderly form;
- Flexible reshaping and pivoting of data sets;
- Intelligent label-based slicing, fancy indexing, and subsetting of large data sets;
- Columns can be inserted and deleted from data structures for size mutability;
- Aggregating or transforming data with a powerful group by engine allowing split-apply-combine operations on data sets;
- High performance merging and joining of data sets;
- Hierarchical axis indexing provides an intuitive way of working with high-dimensional data in a lower-dimensional data structure;
- Time series-functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging. Even create domain-specific time offsets and join time series without losing data;
- The library has been ruthlessly optimized for performance, with critical code paths compiled to C;
- Python with pandas is in use in a wide variety of academic and commercial domains, including Finance, Neuroscience, Economics, Statistics, Advertising, Web Analytics, and more.
版权声明:本文为lexus原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。