获取数据

数据可以是自己爬取,也可以是其它方式获取,不多说。

数据的特征提取和数据清洗

在这里插入图片描述
在SPSS Modeler 中导入数据并利用特征模型对原数据进行特征分析。
在这里插入图片描述
可以得出重要的字段和不重要的字段。

在这里插入图片描述
对136个重要字段进行数据审核,可以看出字段有无缺失值、异常值,。。

~~

然后对数据根据个人需求进行数据清洗。


*

分析方法:连续变量分箱方法;logistics回归;评分卡方法。

*对字段进行分享计算WOE值
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

建立模型

在这里插入图片描述

导出模型方程为TXT文本

在这里插入图片描述
**

导出回归系数**

在这里插入图片描述
根据之前导出的方程模型进行计算

将回归系数转化成信用评分

在这里插入图片描述
根据上一步得出的回归系数计算各分箱评分
在这里插入图片描述

信用模型检验

在这里插入图片描述
在这里插入图片描述
导出八万条客户的评分数据。
在这里插入图片描述
可以看出K-S值最大的是267分,说明如果267分以上放贷,以下不放,可以有拒绝49.592%的坏顾客,同时也会拒绝31.247%的好客户。。

模型验证示例

在这里插入图片描述
到此就结束,人懒,细节的地方就不写了。因为纯属是为了学习,所以模型最后的结果不是很让人满意,但是大致上了解了SPSS Modeler 的操作。。

版权声明:本文为匿名原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接: