import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from PIL import Image

from utils import label_map_util

from utils import visualization_utils as vis_util

PATH_TO_CKPT = \'ssd_mobilenet_v1_coco_2018_01_28/frozen_inference_graph.pb\'
PATH_TO_LABELS = \'data/mscoco_label_map.pbtxt\'
NUM_CLASSES = 90

detection_graph = tf.Graph()

with detection_graph.as_default():
    od_graph_def = tf.GraphDef()
    with tf.gfile.GFile(PATH_TO_CKPT, \'rb\') as fid:
        od_graph_def.ParseFromString(fid.read())
        tf.import_graph_def(od_graph_def, name=\'\')

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

def load_image_into_numpy_array(image):
    (im_width, im_height) = image.size
    return np.array(image.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8)

TEST_IMAGE_PATHS = [\'test_data/image1.jpg\']

with detection_graph.as_default():
    with tf.Session(graph=detection_graph) as sess:
        image_tensor = detection_graph.get_tensor_by_name(\'image_tensor:0\')
        detection_boxes = detection_graph.get_tensor_by_name(\'detection_boxes:0\')
        detection_scores = detection_graph.get_tensor_by_name(\'detection_scores:0\')
        detection_classes = detection_graph.get_tensor_by_name(\'detection_classes:0\')
        num_detections = detection_graph.get_tensor_by_name(\'num_detections:0\')
        for image_path in TEST_IMAGE_PATHS:
            image = Image.open(image_path)
            image_np = load_image_into_numpy_array(image)
            image_np_expanded = np.expand_dims(image_np, axis=0)
            (boxes, scores, classes, num) = sess.run(
                [detection_boxes, detection_scores, detection_classes, num_detections],
                feed_dict={image_tensor: image_np_expanded})
            vis_util.visualize_boxes_and_labels_on_image_array(image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8)
            plt.figure(figsize=[12, 8])
            plt.imshow(image_np)
            plt.show()

 

版权声明:本文为ywqtro原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/ywqtro/p/14773170.html