箱图 、小提琴图
一、箱形图box plot
1)箱型图概念
箱形图(Box-plot)又称为盒须图、盒式图或箱线图,是一种用作显示一组数据分散情况资料的统计图。因形状如箱子而得名。
箱形图于1977年由美国著名统计学家约翰·图基(John Tukey)发明。它能显示出一组数据的最大值、最小值、中位数、及上下四分位数。
2)箱形图包含内容
“盒式图”或叫”盒须图””箱形图”boxplot(也称箱须图(Box-whiskerPlot)须图又称为箱形图,其绘制须使用常用的统计量,能提供有关数据位置和分散情况的关键信息,尤其在比较不同的母体数据时更可表现其差异。
3)绘制步骤
4)作用(从数据的分布来看)
数据异常值
一批数据中的异常值值得关注,忽视异常值的存在是十分危险的,不加剔除地把异常值包括进数据的计算分析过程中,对结果会带来不良影响;重视异常值的出现,分析其产生的原因,常常成为发现问题进而改进决策的契机。箱形图为我们提供了识别异常值的一个标准:异常值被定义为小于Q1-1.5IQR或大于Q3+1.5IQR的值。虽然这种标准有点任意性,但它来源于经验判断,经验表明它在处理需要特别注意的数据方面表现不错。这与识别异常值的经典方法有些不同。众所周知,基于正态分布的3σ法则或z分数方法是以假定数据服从正态分布为前提的,但实际数据往往并不严格服从正态分布。它们判断异常值的标准是以计算数据批的均值和标准差为基础的,而均值和标准差的耐抗性极小,异常值本身会对它们产生较大影响,这样产生的异常值个数不会多于总数0.7%。显然,应用这种方法于非正态分布数据中判断异常值,其有效性是有限的。箱形图的绘制依靠实际数据,不需要事先假定数据服从特定的分布形式,没有对数据作任何限制性要求,它只是真实直观地表现数据形状的本来面貌;另一方面,箱形图判断异常值的标准以四分位数和四分位距为基础,四分位数具有一定的耐抗性,多达25%的数据可以变得任意远而不会很大地扰动四分位数,所以异常值不能对这个标准施加影响,箱形图识别异常值的结果比较客观。由此可见,箱形图在识别异常值方面有一定的优越性。[2]
偏态和尾重
比较标准正态分布、不同自由度的t分布和非对称分布数据的箱形图的特征,可以发现:对于标准正态分布的大样本,只有 0.7%的值是异常值,中位数位于上下四分位数的中央,箱形图的方盒关于中位线对称。选取不同自由度的t分布的大样本,代表对称重尾分布,当t分布的自由度越小,尾部越重,就有越大的概率观察到异常值。以卡方分布作为非对称分布的例子进行分析,发现当卡方分布的自由度越小,异常值出现于一侧的概率越大,中位数也越偏离上下四分位数的中心位置,分布偏态性越强。异常值集中在较大值一侧,则分布呈现右偏态;;异常值集中在较小值一侧,则分布呈现左偏态。下表列出了几种分布的样本数据箱形图的特征(样本数据由SAS的随机数生成函数自动生成),验证了上述规律。这个规律揭示了数据批分布偏态和尾重的部分信息,尽管它们不能给出偏态和尾重程度的精确度量,但可作为我们粗略估计的依据。
数据的形状
同一数轴上,几批数据的箱形图并行排列,几批数据的中位数、尾长、异常值、分布区间等形状信息便一目了然。在一批数据中,哪几个数据点出类拔萃,哪些数据点表现不及一般,这些数据点放在同类其它群体中处于什么位置,可以通过比较各箱形图的异常值看出。各批数据的四分位距大小,正常值的分布是集中还是分散,观察各方盒和线段的长短便可明了。每批数据分布的偏态如何,分析中位线和异常值的位置也可估计出来。还有一些箱形图的变种,使数据批间的比较更加直观明白。例如有一种可变宽度的箱形图,使箱的宽度正比于批量的平方根,从而使批量大的数据批有面积大的箱,面积大的箱有适当的视觉效果。如果对同类群体的几批数据的箱形图进行比较,分析评价,便是常模参照解释方法的可视图示;如果把受测者数据批的箱形图与外在效标数据批的箱形图比较分析,便是效标参照解释的可视图示。箱形图结合这些分析方法用于质量管理、人事测评、探索性数据分析等统计分析活动中去,有助于分析过程的简便快捷,其作用显而易见。
5)JMP中做box plot
二、小提琴图violin plot
1)概念
小提琴图 (Violin Plot) 用于显示数据分布及其概率密度。
这种图表结合了箱形图和密度图的特征,主要用来显示数据的分布形状。中间的黑色粗条表示四分位数范围,从其延伸的幼细黑线代表 95% 置信区间,而白点则为中位数。
箱形图在数据显示方面受到限制,简单的设计往往隐藏了有关数据分布的重要细节。例如使用箱形图时,我们不能了解数据分布是双模还是多模。虽然小提琴图可以显示更多详情,但它们也可能包含较多干扰信息。