1.数据查看和转置

import numpy as np
import pandas as pd  
# 导入numpy、pandas模块

# 数据查看、转置

df = pd.DataFrame(np.random.rand(16).reshape(8,2)*100,
                   columns = [\'a\',\'b\'])
print(df.head(2))  #查看前两条数据
print(df.tail())
# .head()查看头部数据
# .tail()查看尾部数据
# 默认查看5条

print(df.T)
# .T 转置

输出结果:

           a          b
0  64.231620  24.222954
1   3.004779  92.549576
           a          b
3  54.787062  17.264577
4  13.106864   5.500618
5   8.631310  79.109355
6  22.107241  94.901685
7  29.034599  54.156278
           0          1          2          3          4          5  \
a  64.231620   3.004779  25.002825  54.787062  13.106864   8.631310   
b  24.222954  92.549576  87.818090  17.264577   5.500618  79.109355   

           6          7  
a  22.107241  29.034599  
b  94.901685  54.156278  

2.(1)添加与修改_1

# 添加与修改

df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                   columns = [\'a\',\'b\',\'c\',\'d\'])
print(df)

df[\'e\'] = 10
df.loc[4] = 20
print(df)
# 新增列/行并赋值

df[\'e\'] = 20
df[[\'a\',\'c\']] = 100
print(df)
# 索引后直接修改值

#注意:不能同时添加两列,否则会报错,如:df[[\'f\',\'g\']] = 200 ,必须一列一列的添加

输出结果:

           a          b          c          d
0  14.342082  52.604100  26.561995  60.441731
1  20.331108  43.537490   1.020098   7.171418
2  35.226542   9.573718  99.273254   0.867227
3  47.511549  56.783730  47.580639  67.007725
           a          b          c          d   e
0  14.342082  52.604100  26.561995  60.441731  10
1  20.331108  43.537490   1.020098   7.171418  10
2  35.226542   9.573718  99.273254   0.867227  10
3  47.511549  56.783730  47.580639  67.007725  10
4  20.000000  20.000000  20.000000  20.000000  20
     a          b    c          d   e
0  100  52.604100  100  60.441731  20
1  100  43.537490  100   7.171418  20
2  100   9.573718  100   0.867227  20
3  100  56.783730  100  67.007725  20
4  100  20.000000  100  20.000000  20

(2)添加与修改_2

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                   columns = [\'a\',\'b\',\'c\',\'d\'])
df.iloc[0] = 100
print(df)
df.iloc[0] = [1,2,3,4]
print(df)

#增加一行尽量曲用loc去增加,iloc是不能增加的,会报错
df.loc[5] = 100
print(df)

输出结果:

            a           b           c           d
0  100.000000  100.000000  100.000000  100.000000
1   93.941010    7.951216   77.744847   66.842114
2   72.795874   40.031626   22.842638   92.876458
3   40.474858   53.663771   48.452597   66.444382
           a          b          c          d
0   1.000000   2.000000   3.000000   4.000000
1  93.941010   7.951216  77.744847  66.842114
2  72.795874  40.031626  22.842638  92.876458
3  40.474858  53.663771  48.452597  66.444382
            a           b           c           d
0    1.000000    2.000000    3.000000    4.000000
1   93.941010    7.951216   77.744847   66.842114
2   72.795874   40.031626   22.842638   92.876458
3   40.474858   53.663771   48.452597   66.444382
5  100.000000  100.000000  100.000000  100.000000

3.删除

(1)

# 删除  del / drop()

df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                   columns = [\'a\',\'b\',\'c\',\'d\'])
print(df)

del df[\'a\']
print(df)
print(\'-----\')
# del语句 - 删除列
#注意:删除行的时候不能用del df.loc[index]或者df.iloc[index]  否则会报错 可以变相的删除 如删除第一行 可令df = df.iloc[1:]

print(df.drop(0))
print(df.drop([1,2]))
print(df)
print(\'-----\')
# drop()删除行,inplace=False → 删除后生成新的数据,不改变原数据

print(df.drop([\'d\'], axis = 1)) #axis =0 的时候删除行
print(df)
# drop()删除列,需要加上axis = 1,inplace=False → 删除后生成新的数据,不改变原数据

输出结果:

           a          b          c          d
0  71.238538   6.121303  77.988034  44.047009
1  34.018365  78.192855  50.467246  81.162337
2  86.311980  44.341469  49.789445  35.657665
3  78.073272  31.457479  74.385014  24.655976
           b          c          d
0   6.121303  77.988034  44.047009
1  78.192855  50.467246  81.162337
2  44.341469  49.789445  35.657665
3  31.457479  74.385014  24.655976
-----
           b          c          d
1  78.192855  50.467246  81.162337
2  44.341469  49.789445  35.657665
3  31.457479  74.385014  24.655976
           b          c          d
0   6.121303  77.988034  44.047009
3  31.457479  74.385014  24.655976
           b          c          d
0   6.121303  77.988034  44.047009
1  78.192855  50.467246  81.162337
2  44.341469  49.789445  35.657665
3  31.457479  74.385014  24.655976
-----
           b          c
0   6.121303  77.988034
1  78.192855  50.467246
2  44.341469  49.789445
3  31.457479  74.385014
           b          c          d
0   6.121303  77.988034  44.047009
1  78.192855  50.467246  81.162337
2  44.341469  49.789445  35.657665
3  31.457479  74.385014  24.655976

(2)

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                   columns = [\'a\',\'b\',\'c\',\'d\'])
print(df.drop(0)) 
print(df)  #源数据不会改变

print(df.drop(0,inplace = True))  #这个方法改变了源数据,并不生成新的值了,所以输出为空
print(df)  #有inplace 参数的时候就替换了源数据

输出结果:

           a          b          c          d
1  78.187118  19.237655  94.443127  67.466532
2  37.921956  84.157197  23.311418  24.128222
3  12.330334   6.034799  62.023747  28.034041
           a          b          c          d
0  60.558857  94.367826  88.690379  33.957380
1  78.187118  19.237655  94.443127  67.466532
2  37.921956  84.157197  23.311418  24.128222
3  12.330334   6.034799  62.023747  28.034041
None
           a          b          c          d
1  78.187118  19.237655  94.443127  67.466532
2  37.921956  84.157197  23.311418  24.128222
3  12.330334   6.034799  62.023747  28.034041

4.对齐

# 对齐

df1 = pd.DataFrame(np.random.randn(10, 4), columns=[\'A\', \'B\', \'C\', \'D\'])
df2 = pd.DataFrame(np.random.randn(7, 3), columns=[\'A\', \'B\', \'C\'])
print(df1)
print(df2)
print(df1 + df2) #有共同的列名和共同的标签的话 就会相加 。没有共同的部分就会变为空值。任何值和空值进行运算都会变为空值
# DataFrame对象之间的数据自动按照列和索引(行标签)对齐 ,

输出结果:

   A         B         C         D
0 -1.528903  0.519125 -0.214881 -0.591775
1 -0.334501 -0.837666  0.568927 -0.599237
2  0.753145  0.569262 -1.181976  1.225363
3 -0.177136 -0.367530  0.382826  1.447591
4  0.215967 -0.612947  0.844906  0.130414
5  0.414375 -0.207225  0.140776  1.086686
6  0.008855  2.873956 -0.650806 -2.631485
7 -0.634085  0.625107  0.046198 -0.352343
8  0.646812  0.928476  0.519168 -0.644997
9 -0.697006 -0.178875  0.856392 -0.512101
          A         B         C
0 -0.373297  0.607873  0.120016
1  0.343563 -2.901778 -0.370051
2  0.428568  0.319359 -3.263585
3  1.042845 -0.314763 -0.198816
4  0.071258 -0.484855  0.563127
5 -2.270312 -0.145558  0.931203
6  2.493652 -0.232491 -0.216451
          A         B         C   D
0 -1.902200  1.126998 -0.094865 NaN
1  0.009061 -3.739444  0.198876 NaN
2  1.181713  0.888620 -4.445561 NaN
3  0.865710 -0.682293  0.184010 NaN
4  0.287224 -1.097802  1.408034 NaN
5 -1.855938 -0.352783  1.071979 NaN
6  2.502507  2.641465 -0.867257 NaN
7       NaN       NaN       NaN NaN
8       NaN       NaN       NaN NaN
9       NaN       NaN       NaN NaN

6.排序

(1)按值排序

# 排序1 - 按值排序 .sort_values
# 同样适用于Series

df1 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                   columns = [\'a\',\'b\',\'c\',\'d\'])
print(df1)
print(df1.sort_values([\'a\'], ascending = True))  # 升序
#也可以这样写:print(df1.sort_values(by = \'a\',ascending = True))
print(df1.sort_values([\'a\'], ascending = False))  # 降序
print(\'------\')
# ascending参数:设置升序降序,默认升序
# 单列排序

df2 = pd.DataFrame({\'a\':[1,1,1,1,2,2,2,2],
                  \'b\':list(range(8)),
                  \'c\':list(range(8,0,-1))})
print(df2)
print(df2.sort_values([\'a\',\'c\']))
# 多列排序,按列顺序排序
# 注意inplace参数

输出结果:

    a          b          c          d
0  28.598118   8.037050  51.856085  45.859414
1  91.412263  59.797819  27.912198   6.996883
2  92.001255  76.467245  76.524894  33.463836
3  47.054750  37.376781  94.286800  53.429360
           a          b          c          d
0  28.598118   8.037050  51.856085  45.859414
3  47.054750  37.376781  94.286800  53.429360
1  91.412263  59.797819  27.912198   6.996883
2  92.001255  76.467245  76.524894  33.463836
           a          b          c          d
2  92.001255  76.467245  76.524894  33.463836
1  91.412263  59.797819  27.912198   6.996883
3  47.054750  37.376781  94.286800  53.429360
0  28.598118   8.037050  51.856085  45.859414
------
   a  b  c
0  1  0  8
1  1  1  7
2  1  2  6
3  1  3  5
4  2  4  4
5  2  5  3
6  2  6  2
7  2  7  1
   a  b  c
3  1  3  5
2  1  2  6
1  1  1  7
0  1  0  8
7  2  7  1
6  2  6  2
5  2  5  3
4  2  4  4

(2)索引排序

# 排序2 - 索引排序 .sort_index

df1 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                  index = [5,4,3,2],
                   columns = [\'a\',\'b\',\'c\',\'d\'])
df2 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                  index = [\'h\',\'s\',\'x\',\'g\'],
                   columns = [\'a\',\'b\',\'c\',\'d\'])
print(df1)
print(df1.sort_index())
print(df2)
print(df2.sort_index())
# 按照index排序
# 默认 ascending=True, inplace=False

输出结果:

       a          b          c          d
5  80.932585  71.991854  64.582943  23.443231
4  82.054030  87.459058  12.108433  83.047490
3  56.329863  14.926822  47.884418  59.880352
2   0.347007  69.794103  74.375345  12.736429
           a          b          c          d
2   0.347007  69.794103  74.375345  12.736429
3  56.329863  14.926822  47.884418  59.880352
4  82.054030  87.459058  12.108433  83.047490
5  80.932585  71.991854  64.582943  23.443231
           a          b          c          d
h  53.041921  93.834097  13.423132  82.702020
s   0.003814  75.721426  73.086606  20.597472
x  32.678307  58.369155  70.487505  24.833117
g  46.232889  19.365147   9.872537  98.246438
           a          b          c          d
g  46.232889  19.365147   9.872537  98.246438
h  53.041921  93.834097  13.423132  82.702020
s   0.003814  75.721426  73.086606  20.597472
x  32.678307  58.369155  70.487505  24.833117

(3)

df1 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                  index = [5,4,3,2],
                   columns = [\'a\',\'b\',\'c\',\'d\'])
print(df1)
print(df1.sort_index())
print(df1)  # df1并没有变

print(df1.sort_index(inplace = True))
print(df1)  # df1发生改变

输出结果:

          a          b          c          d
5  45.004735  23.449962  52.756124  60.237141
4  74.945903  63.813663  29.937821  66.420415
3  45.737208  82.376775  80.615108  40.479094
2  41.743173  82.013411  83.372130  76.195150
           a          b          c          d
2  41.743173  82.013411  83.372130  76.195150
3  45.737208  82.376775  80.615108  40.479094
4  74.945903  63.813663  29.937821  66.420415
5  45.004735  23.449962  52.756124  60.237141
           a          b          c          d
5  45.004735  23.449962  52.756124  60.237141
4  74.945903  63.813663  29.937821  66.420415
3  45.737208  82.376775  80.615108  40.479094
2  41.743173  82.013411  83.372130  76.195150
None
           a          b          c          d
2  41.743173  82.013411  83.372130  76.195150
3  45.737208  82.376775  80.615108  40.479094
4  74.945903  63.813663  29.937821  66.420415
5  45.004735  23.449962  52.756124  60.237141

练习:

作业1:创建一个3*3,值在0-100区间随机值的Dataframe(如图),分别按照index和第二列值大小,降序排序

import numpy as np
import pandas as pd
#练习1
# df = pd.DataFrame(np.random.rand(9).reshape(3,3)*100,
#                   index=[\'a\',\'b\',\'c\'],
#                   columns=[\'v1\',\'v2\',\'v3\'])
# print(df)
#
# print(df.sort_index())
# df.sort_values(by = \'v2\',ascending= False,inplace = True)
# print(df)

作业2:创建一个5*2,值在0-100区间随机值的Dataframe(如图)df1,通过修改得到df2

#练习2
# df1 = pd.DataFrame(np.random.rand(10).reshape(5,2)*100,
#                   index=[\'a\',\'b\',\'c\',\'d\',\'e\'],
#                   columns=[\'v1\',\'v2\'])
# print(df1)
# print(df1.drop([\'e\'],axis = 0).T)

作业3:如图创建Series,并按照要求修改得到结果

#练习3
df2 = pd.Series(np.arange(10),index= [\'a\',\'b\',\'c\',\'d\',\'e\',\'f\',\'g\',\'h\',\'i\',\'j\'])
print(df2)
df2.loc[[\'a\',\'e\',\'f\']] = 100
print(df2)
#或者
# df2.iloc[0] = 100
# df2.iloc[3] = 100
# df2.iloc[4] = 100

版权声明:本文为carlber原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/carlber/p/9918208.html