遗传算法与蚁群算法结合
遗传算法与蚁群算法结合
2019-11-19 17:52
工班
阅读(3068)
评论(1)
编辑
收藏
举报
遗传算法
1、基本思想
2、算法原理
3、代码实现
4、结果截图
5、总结
1·基本思想
吸取两个算法的优点,优缺互补,克服两个算法的缺点,利用了遗传算法的快速时间效率,优于蚂蚁算法的时间效率。并且求解精度效率优于遗传算法。这样就提高了两个算法结合的算法时间效率和求解精度。
2、算法原理
这个算法的原理是先利用遗传算法的快速性、全局收敛性和随机性求出结果,结果产生有关问题的初始信息素分布,遗传算法执行完在运用蚁群算法,在一定初始信息素分布的情况下,充分利用蚁群算法并行性、正反馈性、求解精度效率高的特点。
3、代码实现
%main clear; clc; %%%%%%%%%%%%%%%输入参数%%%%%%%% N=50; %%城市的个数 M=100; %%种群的个数 ITER=500; %%迭代次数 %C_old=C; m=2; %%适应值归一化淘汰加速指数 Pc=0.8; %%交叉概率 Pmutation=0.05; %%变异概率 %%生成城市的坐标 pos=randn(N,2); %%生成城市之间距离矩阵 D=zeros(N,N); for i=1:N for j=i+1:N dis=(pos(i,1)-pos(j,1)).^2+(pos(i,2)-pos(j,2)).^2; D(i,j)=dis^(0.5); D(j,i)=D(i,j); end end %%生成初始群体 popm=zeros(M,N); for i=1:M popm(i,:)=randperm(N);%随机排列,比如[2 4 5 6 1 3] end %%随机选择一个种群 R=popm(1,:); figure(1); scatter(pos(:,1),pos(:,2),\'rx\');%画出所有城市坐标 axis([-3 3 -3 3]); figure(2); plot_route(pos,R); %%画出初始种群对应各城市之间的连线 axis([-3 3 -3 3]); %%初始化种群及其适应函数 fitness=zeros(M,1); len=zeros(M,1); for i=1:M%计算每个染色体对应的总长度 len(i,1)=myLength(D,popm(i,:)); end maxlen=max(len);%最大回路 minlen=min(len);%最小回路 fitness=fit(len,m,maxlen,minlen); rr=find(len==minlen);%找到最小值的下标,赋值为rr R=popm(rr(1,1),:);%提取该染色体,赋值为R for i=1:N fprintf(\'%d \',R(i));%把R顺序打印出来 end fprintf(\'\n\'); fitness=fitness/sum(fitness); distance_min=zeros(ITER+1,1); %%各次迭代的最小的种群的路径总长 nn=M; iter=0; while iter<=ITER fprintf(\'迭代第%d次\n\',iter); %%选择操作 p=fitness./sum(fitness); q=cumsum(p);%累加 for i=1:(M-1) len_1(i,1)=myLength(D,popm(i,:)); r=rand; tmp=find(r<=q); popm_sel(i,:)=popm(tmp(1),:); end [fmax,indmax]=max(fitness);%求当代最佳个体 popm_sel(M,:)=popm(indmax,:); %%交叉操作 nnper=randperm(M); % A=popm_sel(nnper(1),:); % B=popm_sel(nnper(2),:); %% for i=1:M*Pc*0.5 A=popm_sel(nnper(i),:); B=popm_sel(nnper(i+1),:); [A,B]=cross(A,B); % popm_sel(nnper(1),:)=A; % popm_sel(nnper(2),:)=B; popm_sel(nnper(i),:)=A; popm_sel(nnper(i+1),:)=B; end %%变异操作 for i=1:M pick=rand; while pick==0 pick=rand; end if pick<=Pmutation popm_sel(i,:)=Mutation(popm_sel(i,:)); end end %%求适应度函数 NN=size(popm_sel,1); len=zeros(NN,1); for i=1:NN len(i,1)=myLength(D,popm_sel(i,:)); end maxlen=max(len); minlen=min(len); distance_min(iter+1,1)=minlen; fitness=fit(len,m,maxlen,minlen); rr=find(len==minlen); fprintf(\'minlen=%d\n\',minlen); R=popm_sel(rr(1,1),:); for i=1:N fprintf(\'%d \',R(i)); end fprintf(\'\n\'); popm=[]; popm=popm_sel; iter=iter+1; %pause(1); end %end of while figure(3) plot_route(pos,R); axis([-3 3 -3 3]); figure(4) plot(distance_min); %交叉操作函数 cross.m function [A,B]=cross(A,B) L=length(A); if L<10 W=L; elseif ((L/10)-floor(L/10))>=rand&&L>10 W=ceil(L/10)+8; else W=floor(L/10)+8; end %%W为需要交叉的位数 p=unidrnd(L-W+1);%随机产生一个交叉位置 %fprintf(\'p=%d \',p);%交叉位置 for i=1:W x=find(A==B(1,p+i-1)); y=find(B==A(1,p+i-1)); [A(1,p+i-1),B(1,p+i-1)]=exchange(A(1,p+i-1),B(1,p+i-1)); [A(1,x),B(1,y)]=exchange(A(1,x),B(1,y)); end end %连点画图函数 plot_route.m function plot_route(a,R) scatter(a(:,1),a(:,2),\'rx\'); hold on; plot([a(R(1),1),a(R(length(R)),1)],[a(R(1),2),a(R(length(R)),2)]); hold on; for i=2:length(R) x0=a(R(i-1),1); y0=a(R(i-1),2); x1=a(R(i),1); y1=a(R(i),2); xx=[x0,x1]; yy=[y0,y1]; plot(xx,yy); hold on; end end %染色体的路程代价函数 mylength.m function len=myLength(D,p)%p是一个排列 [N,NN]=size(D); len=D(p(1,N),p(1,1)); for i=1:(N-1) len=len+D(p(1,i),p(1,i+1)); end end %变异函数 Mutation.m function a=Mutation(A) index1=0;index2=0; nnper=randperm(size(A,2)); index1=nnper(1); index2=nnper(2); %fprintf(\'index1=%d \',index1); %fprintf(\'index2=%d \',index2); temp=0; temp=A(index1); A(index1)=A(index2); A(index2)=temp; a=A; end %适应度函数fit.m,每次迭代都要计算每个染色体在本种群内部的优先级别,类似归一化参数。越大约好! function fitness=fit(len,m,maxlen,minlen) fitness=len; for i=1:length(len) fitness(i,1)=(1-(len(i,1)-minlen)/(maxlen-minlen+0.0001)).^m; end %对调函数 exchange.m function [x,y]=exchange(x,y) temp=x; x=y; y=temp; end
4、结果截图
图1 图2
图3 图4
图5 图6
图7 图8
图9 图10
下标是基数的图是迭代200次的,分别是城市的坐标图,初始种群对应各城市之间的连线图,最佳路径图,路径长度图。下标是偶数的是迭代500次的,我定义的城市个数是25个,种群的个数是100个,交查概率为0.8.迭代200次的最佳路径是17 19 1 21 18 4 16 11 8 6 3 5 14 20 2 23 22 24 15 9 10 13 7 25 12 ,路径长度是1.858666e+01,迭代500次的最佳路径是11 6 15 20 8 7 12 5 24 25 22 18 19 23 2 1 21 14 10 13 16 3 17 9 4 ,最短路径是1.733842e+01。有上述可看出,当尘世个数、种群个数、交叉概率相等时,迭代的次数越多,则算出来的路径长度越短,路径也不相同。
图11 图12
图13 图14
迭代第500次
minlen=3.422104e+01
43 47 33 30 5 49 27 42 9 28 32 16 11 40 31 3 39 20 44 13 4 38 1 14 23 8 29 22 6 10 24 19 18 45 7 15 48 37 12 26 41 17 25 21 2 34 50 46 36 35
对比上面的,改变城市数量,路径变大。
图15 图16
图17 图18
minlen=3.923642e+01
35 10 48 9 20 19 16 23 24 8 7 12 28 30 44 38 13 33 2 1 14 26 47 34 41 18 39 22 3 27 5 40 6 25 45 11 49 15 21 17 32 29 4 37 36 43 50 42 46 31
以上的图,我改变的是变异概率,改为了0.12,原来的是0.05,对比图11 12 13 14发现最小路径变大,最终形成的最短路径图很不清晰,由此看出,变异概率会影响最短路径的长度和最终路径。
我根据以上的实验,改变参数交叉概率,原来是0.8改为了0.5,发现最小路径在变大。由此看出交叉概率会影响最短路径的长度和最终路径。
5、总结
5.1这两个算法的结合提高了算法的时间性能和优化性能,可以快速明显的看出实验的区别。
5.2两个算法结合起来,减少了参数的调整,避免了大量盲目的去迭代次数。
5.3在遗传算法中产生种群,加快了蚂蚁算法的速度避免了求精确解阶段陷入局部最优。