DIT基-2FFT的C语言实现
在学习完FFT原理后,尝试用C语言写的程序,主要用于加深理解,没有考虑实用性
使用倒序输入,同址运算,顺序输出的方法
为了省事,直接用了C99的complex.h库
经测试与Matlab运算结果一致
#include <complex.h> #define _USE_MATH_DEFINES #include <math.h> void fft(double complex x[], int N); void ButterflyDiag(double complex * base, double complex * x1, double complex * x2, int layers, int presentlayer, int N); // 蝶形结运算 void Inversion(double complex x[], int N); // 原始数据倒序 void fft(double complex x[], int N) { int layers = (int) log2(N); // 迭代层数,默认点数为2的整数幂 int points, groups, distant, presentlayer; int i, j; double complex * base; Inversion(x, N); points = 2; // 每一层每个小组内的点数 for (presentlayer = 1; presentlayer <= layers; presentlayer++) // 当前层 { groups = N / points; // 每一层的分组数 distant = points / 2; // 蝶形运算两点的距离,也是每一组包含的蝶形运算数量 for (i = 0; i < groups; i++) { base = x + i * points; // 每一组的起始位置 for (j = 0; j < distant; j++) ButterflyDiag(base, base + j, base + j + distant, layers, presentlayer, N); } points *= 2; } } void ButterflyDiag(double complex * base, double complex * x1, double complex * x2, int layers, int presentlayer, int N) { double complex tmp1 = *x1; double complex tmp2 = *x2; int r = (x1 - base) << (layers - presentlayer); double complex wnr= cexp(-I * 2.0 * M_PI / N * r); *x1 = tmp1 + tmp2 * wnr; //同址蝶形运算 *x2 = tmp1 - tmp2 * wnr; } void Inversion(double complex x[], int N) { int pos, i, dst; int bit = (int) log2(N); double complex tmp; for(pos = 0; pos < N; pos++) { dst = 0; for(i = 0; i < bit; i++) dst += ((pos >> i) & 1) << (bit - 1 - i); // 地址下标的二进制形式取倒序 if (dst > pos) { tmp = x[pos]; x[pos] = x[dst]; x[dst] = tmp; } } }
fft蝶形运算图
版权声明:本文为Zuko原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。