1,教程:感谢小强

2,用argparse传参数来显示一张图片

#!/usr/bin/python    #linux系统
#coding=utf-8

import cv2
import argparse    #python很常用的一个自带包

ap=argparse.ArgumentParser()    #先实例化一个argparse
ap.add_argument("--image","-i",required=True,help="path to the image")    #调用argparse下的一个方法,这样我们就可以告诉程序,我们后面输入的参数是个什么参数,参数是:标签全称,简称,参数是不是必须的(required),action=“function”(可选参数),help:显示帮助信息
args=vars(ap.parse_args())  #参数名和内容的键值对字典,这个直接记住吧,估计是让参数名和参数的实际值形成了一个字典,字典名字叫args

image=cv2.imread(args["image"])    
print "height",image.shape[0],"px"
print "width",image.shape[1],"px"
print "channels",image.shape[2]
cv2.imshow("image",image)    #图像显示出来

image[0:5,0:5,]=(0,0,255) #把图像y轴上0-5,x轴上0-5的像素变成红色,打印出来
cv2.imshow("color",image)

  (h,w)=image.shape[:2]
  (cx,cy)=(w/2,h/2) #图像中心点

  t1=image[0:cy,0:cx]   #截取左上角的pic
  cv2.imshow(“part1”,t1)

cv2.waitKey(0)
cv2.destroyAllWindows()

 3,opencv绘图

#!/usr/bin/python
#!coding=utf-8

import numpy as np
import cv2

# 初始化一块400*600的画布(相当于生成一个numpy数组,也就是一幅图像),注意这里的画布是三通道的,也就是彩色图像
canvas = np.zeros((400, 600, 3), dtype="uint8")    #注意400是高度y轴,600是宽度

# 画一条绿线
green = (0, 255, 0)
# 起点(0, 0)至终点(600, 400),颜色绿色。PS.这里有一个默认参数,线宽默认为1个像素
cv2.line(canvas, (0, 0), (600, 400), green,4)    #画布,开始坐标,终点坐标,线的颜色和线的粗细
cv2.imshow("Canvas", canvas)    #显示出来瞅瞅
cv2.waitKey(0)

cv2.rectangle(canvas,(0,0),(15,150),green,1) #画矩形的函数:rectangle,需要的是指定原点(矩形的左上角)和矩形的水平宽度和高度,往后是线条颜色 和宽度,注意宽度是-1的时候表示填充
cv2.imshow("Canvas", canvas) #显示出来瞅瞅
cv2.waitKey(0)

 cv2.circle(canvas,(100,150),50,(255,255,255))    #画一个圆形,圆心坐标(x,y),半径50,颜色(255,255,255,)白色

 cv2.imshow(“Canvas”, canvas)
 cv2.waitKey(0)

4,基础图像操作

  1 #!/usr/bin/python
  2 #coding=utf-8
  3 
  4 import sys
  5 import cv2
  6 
  7 import numpy as np
  8 
  9 input_file=sys.argv[1]
 10 img=cv2.imread(input_file)
 11 cv2.imshow(\'original\',img)
 12 
 13 #裁剪图像,对shape函数不甚理解
 14 h,w=img.shape[:2]
 15 start_row,end_row=int(0.21*h),int(0.73*h)
 16 start_col,end_col=int(0.37*w),int(0.92*w)
 17 img_cro=img[start_row:end_row,start_col:end_col]
 18 cv2.imshow(\'img_cro\',img_cro)
 19 
 20 #把图像的长宽都乘以1.3,对热死则函数和参数不甚理解
 21 scaling_factor=1.3
 22 img_scaled=cv2.resize(img,None,fx=scaling_factor,fy=scaling_factor,interpolation=cv2.INTER_LINEAR)
 23 cv2.imshow(\'scaled\',img_scaled)
 24 
 25 #把图像变扁
 26 img_scaled=cv2.resize(img,(250,400),interpolation=cv2.INTER_AREA)
 27 cv2.imshow("skewe",img_scaled)
 28 cv2.waitKey()
 29 
 30 #图像保存到输出文件
 31 output_file=input_file[:4]+\'__cropped.jpg\'
 32 cv2.imwrite(output_file,img_cropped)
 33 
 34 cv2.waitKey()

 5,图像直方图均衡化

目前不甚理解

#!user/bin/python
#!coding=utf-8

import sys
import cv2
import numpy as np

input_file=sys.argv[1]
img=cv2.imread(input_file)

img_gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.imshow("gray",img_gray)    #显示原图的灰度图

#均衡灰度直方图
img_gray_histeq=cv2.equalizeHist(img_gray)
cv2.imshow(\'equlized\',img_gray_histeq)    #不仅是灰色的,而且像是锐化过了,像素差别被增强了

#目前直方图均衡化只适合亮度通道,所以彩色的图在均衡化之前需要转换到YUV色彩空间
img_yuv=cv2.cvtColor(img,cv2.COLOR_BGR2YUV)
#均衡y通道,感觉转换的是red通道
img_yuv[:,:,0]=cv2.equalizeHist(img_yuv[:,:,0])
#转换回bgr
img_histeq=cv2.cvtColor(img_yuv,cv2.COLOR_YUV2BGR)
cv2.imshow(\'input\',img)    #这个是原图
cv2.imshow(\'histeq\',img_histeq)    #这个图感觉颜色被加深了,就是img_gray_histeq图带了颜色

cv2.waitKey()

 

 

版权声明:本文为0-lingdu原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/0-lingdu/p/9880420.html