图像处理项目——基于机器视觉技术的条形码在线识别系统设计

基于机器视觉技术的条形码在线识别系统设计

  本设计研究EAN13条形码识别的译码技术,在基于机器视觉技术上,构建了一套条形码在线检测识别系统,系统将由以下几个部分构成:条形码图像定位与采集、计算机图像预处理、条形码图像中值滤波去噪、条码解析与识读。经过实验,确定该系统可对绝大部分EAN13条形码进行快速并准确的识读。

关键词: 机器视觉; 图像处理; 条码识别;在线检测;EAN13条形码;QT

一:设计目标 

  1. 掌握条形码识别原理;
  2. 熟悉条形码识别的概念,发展现状;
  3. 熟悉机器视觉系统设计的一般流程;
  4. 掌握常用图像处理技术;

 设计内容与要求

1.完成基于机器视觉技术的条形码在线识别系统算法设计;

2.完成基于机器视觉技术的条形码在线识别系统上位机设计;

3.EAN13条形码识别误差率≤2%;

二:qt程序

 三:条形码定位算法

#include <opencv2/opencv.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include<iostream>
#include<stdlib.h>
using namespace cv;
using namespace std;
int main()
{
    Mat Img,grayImg,gradx,blurgradx,gradAbsx,threshImg,close_threshImg,erode_threshImg,dilate_threshImg;
    Img=imread("E:\\txm1.jpg");
    imshow("0原图",Img);            
    cvtColor(Img,grayImg,COLOR_BGR2GRAY);
    imshow("1灰度图",grayImg);
    Scharr(grayImg,gradx,CV_16S,1,0);
    imshow("2边缘检测图",gradx);
    convertScaleAbs(gradx,gradAbsx);
    imshow("3Abs图",gradAbsx);
    blur(gradAbsx,blurgradx,Size(5,5));
    imshow("4滤波图",blurgradx);
    threshold(blurgradx,threshImg,150,255,CV_8UC1);
    imshow("4.5阈值分割图",threshImg);
    Mat kernal=getStructuringElement(MORPH_RECT,Size(25,5));
    morphologyEx(threshImg,close_threshImg,MORPH_CLOSE,kernal);
    imshow("5闭操作",close_threshImg);
    Mat edkl=getStructuringElement(MORPH_RECT,Size(3,3));
    erode(close_threshImg,erode_threshImg,edkl,Point(-1,-1),8);
    imshow("6腐蚀操作",erode_threshImg);
    dilate(erode_threshImg,dilate_threshImg,edkl,Point(-1,-1),15);
    imshow("7膨胀操作",dilate_threshImg);
    waitKey(0);
    return 0;

}

 

四:程序运行及条形码识别测试

 

 

 

 详细代码:https://github.com/hhhvvvddd/Bar-Code-Recognition-System

定位算法:https://www.cnblogs.com/fpzs/p/9637795.html

 

——————

浅谈则止,深入理解AI大道理

扫描下方“AI大道理”,选择“关注”公众号

              欢迎加入!

版权声明:本文为AIBigTruth原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/AIBigTruth/p/10513497.html