基于MapReduce的HBase开发
在伪分布式模式和全分布式模式下 HBase 是架构在 HDFS 上的,因此完全可以将MapReduce 编程框架和 HBase 结合起来使用。也就是说,将 HBase 作为底层“存储结构”,
MapReduce 调用 HBase 进行特殊的处理,这样能够充分结合 HBase 分布式大型数据库和MapReduce 并行计算的优点。
相对应MapReduce的hbase实现类:
1)InputFormat 类:HBase 实现了 TableInputFormatBase 类,该类提供了对表数据的大部分操作,其子类 TableInputFormat 则提供了完整的实现,用于处理表数据并生成键值对。TableInputFormat 类将数据表按照 Region 分割成 split,既有多少个 Regions 就有多个splits。然后将 Region 按行键分成<key,value>对,key 值对应与行健,value 值为该行所包含的数据。
2)Mapper 类和 Reducer 类:HBase 实现了 TableMapper 类和 TableReducer 类,其中TableMapper 类并没有具体的功能,只是将输入的<key,value>对的类型分别限定为 Result 和ImmutableBytesWritable。IdentityTableMapper 类和 IdentityTableReducer 类则是上述两个类的具体实现,其和 Mapper 类和 Reducer 类一样,只是简单地将<key,value>对输出到下一个阶段。
3)OutputFormat 类:HBase 实现的 TableOutputFormat 将输出的<key,value>对写到指定的 HBase 表中,该类不会对 WAL(Write-Ahead Log)进行操作,即如果服务器发生
故障将面临丢失数据的风险。可以使用 MultipleTableOutputFormat 类解决这个问题,该类可以对是否写入 WAL 进行设置。
代码:
import java.io.IOException; import java.util.Iterator; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.HColumnDescriptor; import org.apache.hadoop.hbase.HTableDescriptor; import org.apache.hadoop.hbase.client.HBaseAdmin; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.mapreduce.TableOutputFormat; import org.apache.hadoop.hbase.mapreduce.TableReducer; import org.apache.hadoop.hbase.util.Bytes; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; public class WordCountHBase { // 实现 Map 类 public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } } // 实现 Reduce 类 public static class Reduce extends TableReducer<Text, IntWritable, NullWritable> { public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; Iterator<IntWritable> iterator = values.iterator(); while (iterator.hasNext()) { sum += iterator.next().get(); } // Put 实例化,每个词存一行 Put put = new Put(Bytes.toBytes(key.toString())); // 列族为 content,列修饰符为 count,列值为数目 put.add(Bytes.toBytes("content"), Bytes.toBytes("count"), Bytes.toBytes(String.valueOf(sum))); context.write(NullWritable.get(), put); } } // 创建 HBase 数据表 public static void createHBaseTable(String tableName) throws IOException { // 创建表描述 HTableDescriptor htd = new HTableDescriptor(tableName); // 创建列族描述 HColumnDescriptor col = new HColumnDescriptor("content"); htd.addFamily(col); // 配置 HBase Configuration conf = HBaseConfiguration.create(); conf.set("hbase.zookeeper.quorum","master"); conf.set("hbase.zookeeper.property.clientPort", "2181"); HBaseAdmin hAdmin = new HBaseAdmin(conf); if (hAdmin.tableExists(tableName)) { System.out.println("该数据表已经存在,正在重新创建。"); hAdmin.disableTable(tableName); hAdmin.deleteTable(tableName); } System.out.println("创建表:" + tableName); hAdmin.createTable(htd); } public static void main(String[] args) throws Exception { String tableName = "wordcount"; // 第一步:创建数据库表 WordCountHBase.createHBaseTable(tableName); // 第二步:进行 MapReduce 处理 // 配置 MapReduce Configuration conf = new Configuration(); // 这几句话很关键 conf.set("mapred.job.tracker", "master:9001"); conf.set("hbase.zookeeper.quorum","master"); conf.set("hbase.zookeeper.property.clientPort", "2181"); conf.set(TableOutputFormat.OUTPUT_TABLE, tableName); Job job = new Job(conf, "New Word Count"); job.setJarByClass(WordCountHBase.class); // 设置 Map 和 Reduce 处理类 job.setMapperClass(Map.class); job.setReducerClass(Reduce.class); // 设置输出类型 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(IntWritable.class); // 设置输入和输出格式 job.setInputFormatClass(TextInputFormat.class); job.setOutputFormatClass(TableOutputFormat.class); // 设置输入目录 FileInputFormat.addInputPath(job, new Path("hdfs://master:9000/in/")); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
常见错误及解决方法:
1、java.lang.RuntimeException: java.lang.ClassNotFoundException: org.apache.hadoop.hbase.mapreduce.TableOutputFormat
错误输出节选:
13/09/10 21:14:01 INFO mapred.JobClient: Running job: job_201308101437_0016 13/09/10 21:14:02 INFO mapred.JobClient: map 0% reduce 0% 13/09/10 21:14:16 INFO mapred.JobClient: Task Id : attempt_201308101437_0016_m_000007_0, Status : FAILED java.lang.RuntimeException: java.lang.ClassNotFoundException: org.apache.hadoop.hbase.mapreduce.TableOutputFormat at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:849) at org.apache.hadoop.mapreduce.JobContext.getOutputFormatClass(JobContext.java:235) at org.apache.hadoop.mapred.Task.initialize(Task.java:513) at org.apache.hadoop.mapred.MapTask.run(MapTask.java:353) at org.apache.hadoop.mapred.Child$4.run(Child.java:255) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:396) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1149) at org.apache.hadoop.mapred.Child.main(Child.java:249) Caused by: java.lang.ClassNotFoundException: org.apache.hadoop.hbase.mapreduce.TableOutputFormat at java.net.URLClassLoader$1.run(URLClassLoader.java:202) at java.security.AccessController.doPrivileged(Native Method) at java.net.URLClassLoader.findClass(URLClassLoader.java:190) at java.lang.ClassLoader.loadClass(ClassLoader.java:306) at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:301) at java.lang.ClassLoader.loadClass(ClassLoader.java:247) at java.lang.Class.forName0(Native Method) at java.lang.Class.forName(Class.java:249) at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:802) at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:847) ... 8 more
错误原因:
相关的类文件没有引入到 Hadoop 集群上。
解决步骤:
A、停止HBase数据库:
[hadoop@master bin]$ stop-hbase.sh stopping hbase............ master: stopping zookeeper. [hadoop@master bin]$ jps 16186 Jps 26186 DataNode 26443 TaskTracker 26331 JobTracker 26063 NameNode
停止Hadoop集群:
[hadoop@master bin]$ stop-all.sh Warning: $HADOOP_HOME is deprecated. stopping jobtracker master: Warning: $HADOOP_HOME is deprecated. master: master: stopping tasktracker node1: Warning: $HADOOP_HOME is deprecated. node1: node1: stopping tasktracker stopping namenode master: Warning: $HADOOP_HOME is deprecated. master: master: stopping datanode node1: Warning: $HADOOP_HOME is deprecated. node1: stopping datanode node1: node1: Warning: $HADOOP_HOME is deprecated. node1: node1: stopping secondarynamenode [hadoop@master bin]$ jps 16531 Jps
B、 需要配置 Hadoop 集群中每台机器 ,在 hadoop 目录的 conf 子目录中,找 hadoop-env.sh文件,并添加如下内容:
# set hbase environment export HBASE_HOME=/opt/modules/hadoop/hbase/hbase-0.94.11-security export HADOOP_CLASSPATH=$HBASE_HOME/hbase-0.94.11-security.jar: $HBASE_HOME/hbase-0.94.11-security-tests.jar: $HBASE_HOME/conf
C、重新启动集群和hbase数据库。