python之集合关系的交,差,并集及一些内置方法
1.python_1=[\’yy\’,\’lyf\’,\’wyb\’,\’xz\’,\’lx\’]
linux_2=[\’gql\’,\’ch\’,\’wyb\’,\’dc\’,\’xz\’]
ps=set(python_1)
ls=set(linux_2)
print(ps.intersection(ls)) //输出结果为{\’xz\’, \’wyb\’},求集合交集
print(ps&ls) //输出结果为{\’xz\’, \’wyb\’}
2.python_1=[\’yy\’,\’lyf\’,\’wyb\’,\’xz\’,\’lx\’]
linux_2=[\’gql\’,\’ch\’,\’wyb\’,\’dc\’,\’xz\’]
ps=set(python_1)
ls=set(linux_2)
print(ps.union(ls)) //输出结果为{\’ch\’, \’lyf\’, \’lx\’, \’wyb\’, \’gql\’, \’xz\’, \’dc\’, \’yy\’},求集合并集
print(ps|ls) //输出结果为{\’ch\’, \’lyf\’, \’lx\’, \’wyb\’, \’gql\’, \’xz\’, \’dc\’, \’yy\’}
3.python_1=[\’yy\’,\’lyf\’,\’wyb\’,\’xz\’,\’lx\’]
linux_2=[\’gql\’,\’ch\’,\’wyb\’,\’dc\’,\’xz\’]
ps=set(python_1)
ls=set(linux_2)
print(\’差集:\’,ps-ls) //输出结果为差集: {\’yy\’, \’lx\’, \’lyf\’},求集合差集
print(\’差集:\’,ps.difference(ls)) //输出结果为差集: {\’lx\’, \’lyf\’, \’yy\’}
print(\’差集:\’,ls-ps) //输出结果为差集: {\’dc\’, \’ch\’, \’gql\’}
4. python_1=[\’yy\’,\’lyf\’,\’wyb\’,\’xz\’,\’lx\’]
- linux=[\'gql\',\'ch\',\'wyb\',\'dc\',\'xz\']
ps=set(python_1)
ls=set(linux_2)
print(\'交叉补集\',ps.symmetric_difference(ls)) //输出结果为交叉补集:{\'gql\', \'yy\', \'lyf\', \'lx\', \'ch\', \'dc\'}
print(ps^ls)
5.s1={1,2,3}
s2={4,5}
print(s1.isdisjoint(s2)) //输出结果为True,判断是否为空集,若是则返回True
6.s1={1,2}
s2={1,2,3}
print(s1.issubset(s2)) //输出结果为True,判断s1是否为s2的子集
print(s2.issuperset(s1)) //输出结果为True,判断s2是否为s1的父集
s1.update((5,6,7))
print(s1) //输出结果为{1, 2, 5, 6, 7},可以更新入元组,列表等