多项式的回归
import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures X_train = [[5],[6], [8], [10], [14], [18], [20]] y_train = [[5],[7], [9], [13], [17.5], [18], [20]] X_test = [[6], [8], [11], [16]] y_test = [[8], [12], [15], [18]] regressor = LinearRegression() regressor.fit(X_train, y_train) xx = np.linspace(0, 26, 100) print(xx) #根据线性预测分析0-26的Y值 yy = regressor.predict(xx.reshape(xx.shape[0], 1)) #绘画X_Y关系直线 plt.plot(xx, yy) quadratic_featurizer = PolynomialFeatures(degree=3) X_train_quadratic = quadratic_featurizer.fit_transform(X_train) X_test_quadratic = quadratic_featurizer.transform(X_test) regressor_quadratic = LinearRegression() regressor_quadratic.fit(X_train_quadratic, y_train) xx_quadratic = quadratic_featurizer.transform(xx.reshape(xx.shape[0], 1)) print(xx_quadratic) plt.plot(xx, regressor_quadratic.predict(xx_quadratic), c=\'r\', linestyle=\'--\') plt.title(\'Pizza price regressed on diameter\') plt.xlabel(\'Diameter in inches\') plt.ylabel(\'Price in dollars\') plt.axis([0, 25, 0, 25]) plt.grid(True) plt.scatter(X_train, y_train) plt.show() print(X_train) print(X_train_quadratic) print(X_test) print(X_test_quadratic) print(\'Simple linear regression r-squared\', regressor.score(X_test, y_test)) print(\'Quadratic regression r-squared\', regressor_quadratic.score(X_test_quadratic, y_test))
版权声明:本文为starcrm原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。