结果展示

其中绿线是我绘制的图像划分网格。

这里的loss是我训练的 0.77 ,由于损失函数是我自己写的,所以可能跟大家的不太一样,这个不重要,重要的是学习思路。

重点提示

yolov1是一个目标检测的算法,他是一阶段的检测算法。

一阶段(one-stage):检测物体的同时进行分类。(代表论文:yolov1 - yolov5

二阶段(two-stage):先检测出物体,再进行分类。(代表论文:rcnn,fast-rcnn

重点要理解yolov1的数据特征标注方式。

只有理解了数据特征的标注方式才可以理解他为什么可以起作用。

论文剖析

1、理解VOC数据集的数据形式。

2、从VOC数据集中提取出标注好的数据特征。

3、yolov1的数据组织。

4、yolov1的算法模型。

5、yolov1的准确率评估方式(IOU)

6、yolov1的损失函数。

理解VOC数据集

首先需要知道我们使用的数据集的形式,因为每一个数据集的特征标注以及组织方式都不同。

我们可以去官网下载voc的数据集,这里使用的是voc2012数据集。

VOC数据集镜像网站. 下载voc2012Train/Validation Data (1.9 GB)

数据集下载之后解压出来是这样子:

每个文件夹存放的啥都标注好了,我们这里用不到那么多。

我们只用jpg原图,以及每个原图中目标的位置即可。(下边图片中画红框的两个文件夹)

image-20210312134753503

但是我们发现,Annotations文件夹中的目标位置信息是存放在xml中,所以我们往下分析一个xml文件看看。

<filename> : 表示这个文件是对应于哪一个 jpg 图片的。

<size>:表示对应的 jpg 图片大小。

<object>:就是这个图片中的目标在图片中的信息。包括:目标名字,是否难识别,以及目标在整个图片中的坐标位置。(有几个 object 就是有几个目标)

image-20210312135907293

提取目标初始数据

上边我们分析出每个图片中有什么目标都是存储在xml文件中的,所以我们需要将xml文件的目标与类别数据提取出来,以便我们使用。

思路:

  • 1、使用库 xml.etree.ElementTree 读取xml格式的文件,从中提取出每一个xml文件中的所有<ojgect>标签数据(个数就是目标的数量)。

  • 2、将<object>标签提取出 类别xminyminxmaxymax ,并且将其归一化为 类别、x、y、w、h

归一化就是根据从目标中提取出的 xminyminxmaxymax 得到目标的宽高,分别除以整个图片的宽高。

x:目标的中心位置x坐标。 y:目标的中心位置y坐标。 w:目标的宽度,h:目标的高度。

  • 3、然后将归一化的数据按照上面的格式,整理为labels文件。

每一个labels文件对应于一个图片,labels文件中的每一行就是这个图片中的一个目标的 类别、x、y、w、h 数据(一个图片有几个目标,对应的labels文件就有几行)。

例子:

针对如下xml文件,可以得知:

  • 对应的jpg图片是 2007_000042.jpg,并且图片的大小是 500*335 的三色图(这里的图片大小就是用来归一化的)。
  • 含有两个<object>标签,所以这个图片中有两个目标,并且目标的类别、位置坐标可以根据namexminyminxmaxymax 得到。
<annotation>
	<folder>VOC2012</folder>
	<filename>2007_000042.jpg</filename>
	<source>
		<database>The VOC2007 Database</database>
		<annotation>PASCAL VOC2007</annotation>
		<image>flickr</image>
	</source>
	<size>
		<width>500</width>
		<height>335</height>
		<depth>3</depth>
	</size>
	<segmented>1</segmented>
	<object>
		<name>train</name>
		<pose>Unspecified</pose>
		<truncated>1</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>263</xmin>
			<ymin>32</ymin>
			<xmax>500</xmax>
			<ymax>295</ymax>
		</bndbox>
	</object>
	<object>
		<name>train</name>
		<pose>Unspecified</pose>
		<truncated>1</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>1</xmin>
			<ymin>36</ymin>
			<xmax>235</xmax>
			<ymax>299</ymax>
		</bndbox>
	</object>
</annotation>

大致如下:绿色框 与 蓝色框 分别是两个目标。

image-20210314151928675

使用xml文件中已有数据,得到 labels文件如下:

其中每一行是一个物体,每行的数据表示的意义是: 类别,x,y,w,h . (数据都是归一化过了)

image-20210314202842390

所以,这个就是最初的labels文件的形式。

下一步就是将这个初始labels文件数据形式,组织成可以 直接与对应图片运行 的数据形式。

YOLOV1的数据组织

其实yolo的思想可以用一句话来代替:将一个张图片划分网格(通常是7*7),然后找目标的中心落在那个网格中(得到目标中心点坐标),并且以中心点坐标为参考找出目标边框的宽与高。

将图片进行网格划分

如图,针对图片进行 7*7 的网格划分。

image-20210314160519608

找目标物体中心落所在的网格

所以这个图片中的两个目标 catperson 的中心点分别落在网格中的(5,1)(3,4)两个位置,并且可以知道这个中心点相对于当前网格的坐标(就是紫色框表示的内容)。

image-20210314162931173

目标物体的宽高

在物体中心点找出之后,以中心点为坐标找出边框的宽与高即可。

经过上边的分析,我们可以发现:想要确定一个物体,只要知道它的中心点坐标,以及相对于中心点坐标的物体宽高即可。

所以:当我们的模型拿到一张图片之后

  • 首先,将图片进行网格划分。
  • 然后,判断每一个小网格中是否有物体。
  • 如果预测有物体就预测出物体相对于本网格的坐标,以及相对于本坐标的物体宽高。

labels的组织方式

labels的数据都是来自上边xml中提取的数据。

经过上边yolo运作流程的讲解,可以得知labels数据需要 针对每一个小网格 组织出:相对于当前网格中心点的坐标宽高预测概率目标类别

其中

  • 预测概率的值是 1或0,有目标的时候预测值是1,没目标的时候预测值是0。
  • 这里用20个类别,每一个网格预测的目标是什么类别,则对应的类别数字为1,否则为0 (细节见下图)。

注意:由于每一个网格中可能会有多个目标的中心点,所以这里的labels组织的时候,将每个格子预测两个中心点。(细节见下图)

这个图是所有网格的数据形式。数据长度为30.

**这个图中的所有数据都可以根据 上文从xml中提取的数据得到。 **

image-20210314173554406

由此可知,每个网格的labels是由长度为30的上述数据组成的;因为我们的图片划分为7*7个网格,所以就是有7*7个长度为30的数据组成整个图片的lables。即整张图片的labels数据形式为:7*7*30。labels数据矩阵如下图所示。

image-20210314201431371

所以,我们输入网络的数据就是图片转为tensor的数据,inputs维度为:[batchsize,3,448,448].

网络的输入labels维度为:[batchsize,30,7,7]. 就是上边的数据矩阵。

网络的输出:[batchsize,30,7,7].

ok,上边的数据组织完成,那么接下来就是将组织好的 inputs 与 labels 送入网络训练即可。

YOLOV1模型

  • 网络有24个卷积层,然后是2个全连接层,简化了1×1还原层,由3×3个卷积层组成。
  • (原文使用的是imageNet作为预处理模型,然后后边的输出重写成所需要的输出。)
  • 我这里使用的是基于resnet的预处理模型。

评估标准IOU

IOU就是交并比,因为原来有一个正确的目标边框数据,此时我们预测一个边框数据之后,计算出两个边框相交的面积,在计算出相并的面积,然后求出比值,就是交并比。

image-20210314205253367

交并比越 大 ,说明两个框子越相似,说明预测结果越好。最大 IOU=1 ,就是预测框与真实框重合。

交并比越 小 ,说明两个框子越不相似,说明预测结果越差。最小 IOU=0 ,就是预测框与真实框没有一点相交的地方。

损失函数

三部分组成。

image-20210314210747590

版权声明:本文为xiaoxiaojiea原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/xiaoxiaojiea/p/14534513.html