原文:http://python.jobbole.com/81133/

本文由 伯乐在线 – Den 翻译,toolate 校稿。未经许可,禁止转载!
英文出处:alstatr.blogspot.ca。欢迎加入翻译组

最近,Analysis with Programming加入了Planet Python。作为该网站的首批特约博客,我这里来分享一下如何通过Python来开始数据分析。具体内容如下:

  1. 数据导入
    • 导入本地的或者web端的CSV文件;
  2. 数据变换;
  3. 数据统计描述;
  4. 假设检验
    • 单样本t检验;
  5. 可视化;
  6. 创建自定义函数。

数据导入

这是很关键的一步,为了后续的分析我们首先需要导入数据。通常来说,数据是CSV格式,就算不是,至少也可以转换成CSV格式。在Python中,我们的操作如下:

为了读取本地CSV文件,我们需要pandas这个数据分析库中的相应模块。其中的read_csv函数能够读取本地和web数据。

数据变换

既然在工作空间有了数据,接下来就是数据变换。统计学家和科学家们通常会在这一步移除分析中的非必要数据。我们先看看数据:

对R语言程序员来说,上述操作等价于通过print(head(df))来打印数据的前6行,以及通过print(tail(df))来打印数据的后6行。当然Python中,默认打印是5行,而R则是6行。因此R的代码head(df, n = 10),在Python中就是df.head(n = 10),打印数据尾部也是同样道理。

在R语言中,数据列和行的名字通过colnames和rownames来分别进行提取。在Python中,我们则使用columns和index属性来提取,如下:

版权声明:本文为zhizhan原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/zhizhan/p/5546599.html