要做到机器人的SLAM自适应导航,最基本的要有激光雷达数据或者点云数据,但激光雷达目前价格太高,在淘宝上便宜的也要将近3000块,实在是太贵了,另外可替代的方法是用具有深度摄像机作为传感器发布点云数据,一般用的比较多的是微软的Kinect,或者华硕的Xtion。目前Kinect已经有2.0版本,而且二手的价格也比较便宜,但Kinect2.0支持的USB3.0接口,树莓派USB接口都是2.0的,无奈只能放弃Kinect2.0,Kinect1.0笔者曾经有过一台,影像中感觉体积太大。考虑再三后最终决定使用Xtion,赶紧到淘宝上找,发现价格不便宜,后来发现乐视电视配的第一代体感摄像头,完全是OEM的Xtion,关键是价格要比Xtion便宜好几百,果断进了一台LeTV Xtion,货到后发现装上效果还不错,先上张图: 
这里写图片描述 
一、安装: 
1.安装OpenNI包

sudo apt-get install ros-kinetic-openni-camera
sudo apt-get install ros-kinetic-openni-launch
  • 1
  • 2

2.安装Xtion的新版驱动(现在买到的都是新版本的)

sudo apt-get install libopenni-sensor-primesense0
  • 1

3.启动openni节点(先要在其他终端中启动roscore)

roslaunch openni_launch openni.launch
  • 1

启动成功后终端应该显示如下信息 
这里写图片描述
这里的警告信息可以忽略,不影响使用 
4.查看摄像头的所生成的影像

rosrun image_view disparity_view image:=/camera/depth/disparity 
  • 1

也可以通过rviz来查看生成的影像,执行如下命令

rosrun rviz rviz
  • 1

二、生成点云数据,参考了两篇文档 
OpenNI本身就已经有点云数据了,这篇文章完全是看了前辈的文章,就想把这些优秀的代码整合到ROS中来 
官方文档http://wiki.ros.org/navigation/Tutorials/RobotSetup/Sensors 
古月居的http://blog.csdn.net/hcx25909/article/details/8654684

1.源代码

#include <ros/ros.h>
#include <sensor_msgs/PointCloud.h>
#include <XnCppWrapper.h>
#include <iostream>
#include <iomanip>
#include <vector>

using namespace xn; 
using namespace std; 

struct SColorPoint3D  
{  
    float  X;  
    float  Y;  
    float  Z;  
    float  R;  
    float  G;  
    float  B;  

    SColorPoint3D( XnPoint3D pos, XnRGB24Pixel color )  
    {  
      X = pos.X;  
      Y = pos.Y;  
      Z = pos.Z;  
      R = (float)color.nRed / 255;  
      G = (float)color.nGreen / 255;  
      B = (float)color.nBlue / 255;  
    }  
};  

void GeneratePointCloud( DepthGenerator& rDepthGen,  
                         const XnDepthPixel* pDepth,  
                         const XnRGB24Pixel* pImage,  
                         vector<SColorPoint3D>& vPointCloud )  
{  
    // number of point is the number of 2D image pixel  
    DepthMetaData mDepthMD;  
    rDepthGen.GetMetaData( mDepthMD );  
    unsigned int uPointNum = mDepthMD.FullXRes() * mDepthMD.FullYRes();  

    // build the data structure for convert  
    XnPoint3D* pDepthPointSet = new XnPoint3D[ uPointNum ];  
    unsigned int i, j, idxShift, idx;  
    for( j = 0; j < mDepthMD.FullYRes(); ++j )  
    {  
        idxShift = j * mDepthMD.FullXRes();  
        for( i = 0; i < mDepthMD.FullXRes(); ++i )  
        {  
            idx = idxShift + i;  
            pDepthPointSet[idx].X = i;  
            pDepthPointSet[idx].Y = j;  
            pDepthPointSet[idx].Z = pDepth[idx];  
        }  
    }  

    // un-project points to real world  
    XnPoint3D* p3DPointSet = new XnPoint3D[ uPointNum ];  
    rDepthGen.ConvertProjectiveToRealWorld( uPointNum, pDepthPointSet, p3DPointSet );  
    delete[] pDepthPointSet;  

    // build point cloud  
    for( i = 0; i < uPointNum; ++ i )  
    {  
        // skip the depth 0 points  
        if( p3DPointSet[i].Z == 0 )  
            continue;  

        vPointCloud.push_back( SColorPoint3D( p3DPointSet[i], pImage[i] ) );  
    }  
    delete[] p3DPointSet;  
}  


int main(int argc, char** argv){
  ros::init(argc, argv, "point_cloud_publisher");

  ros::NodeHandle n;
  ros::Publisher cloud_pub = n.advertise<sensor_msgs::PointCloud>("cloud", 50);

  unsigned int num_points = 100;

  int count = 0;
  ros::Rate r(1.0);

  /////////////////
  XnStatus eResult = XN_STATUS_OK;  
  int i = 0;  

  // init  
  Context mContext;  
  eResult = mContext.Init();    

  DepthGenerator mDepthGenerator;  
  eResult = mDepthGenerator.Create(mContext);  
  ImageGenerator mImageGenerator;  
  eResult = mImageGenerator.Create(mContext);  

  // set output mode  
  XnMapOutputMode mapMode;  
  mapMode.nXRes = XN_VGA_X_RES;  
  mapMode.nYRes = XN_VGA_Y_RES;  
  mapMode.nFPS  = 30;  
  eResult = mDepthGenerator.SetMapOutputMode(mapMode);  
  eResult = mImageGenerator.SetMapOutputMode(mapMode);  

  // start generating    
  eResult = mContext.StartGeneratingAll();  
  // read data  
  vector<SColorPoint3D> vPointCloud; 
  /////////////////


  while(n.ok()){

    eResult = mContext.WaitNoneUpdateAll();  
    // get the depth map  
    const XnDepthPixel*  pDepthMap = mDepthGenerator.GetDepthMap();  

    // get the image map  
    const XnRGB24Pixel*  pImageMap = mImageGenerator.GetRGB24ImageMap();  

    // generate point cloud  
    vPointCloud.clear();  
    GeneratePointCloud(mDepthGenerator, pDepthMap, pImageMap, vPointCloud );  

    // print point cloud  
    cout.flags(ios::left);    //Left-aligned  
    cout << "Point number: " << vPointCloud.size() << endl; 

    num_points=vPointCloud.size();

    sensor_msgs::PointCloud cloud;
    cloud.header.stamp = ros::Time::now();
    cloud.header.frame_id = "sensor_frame";

    cloud.points.resize(num_points);

    //we\'ll also add an intensity channel to the cloud
    cloud.channels.resize(3);
    cloud.channels[0].name = "R";
    cloud.channels[0].values.resize(num_points);
    cloud.channels[1].name = "G";
    cloud.channels[1].values.resize(num_points);
    cloud.channels[2].name = "G";
    cloud.channels[2].values.resize(num_points);

    //generate some fake data for our point cloud
    for(unsigned int i = 0; i < num_points; ++i){
      cloud.points[i].x = vPointCloud[i].X;
      cloud.points[i].y = vPointCloud[i].Y;
      cloud.points[i].z = vPointCloud[i].Z;
      cloud.channels[0].values[i] = vPointCloud[i].R;
      cloud.channels[1].values[i] = vPointCloud[i].G;
      cloud.channels[2].values[i] = vPointCloud[i].B;
    }

    cloud_pub.publish(cloud);
    ++count;
    r.sleep();
  }
  return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162

2.另外在包目录下的CMakeLists.txt文件中有两处修改,否则编译会出错 
增加openni的引用路径

include_directories ("/usr/include/ni/")
  • 1

增加新的可执行文件说明

add_executable(XtionPointCloud src/XtionPointCloud.cpp)
target_link_libraries(XtionPointCloud ${catkin_LIBRARIES})
target_link_libraries(XtionPointCloud OpenNI)
  • 1
  • 2
  • 3

修改保存后在~/catkin_ws下执行编译命令

catkin_make
  • 1

3.启动XtionPointCloud节点

rosrun diego_nav XtionPointCloud
  • 1

打开另外一个终端查看发布的点云数据

rostopic echo /cloud
  • 1

这时候就会看到一屏一屏的数据 
这里写图片描述

树莓派处理其点云数据还是很吃力的,这个时候树莓派的系统资源使用情况: 
这里写图片描述 
4个CPU的使用都在50%以上 
内存使用接近90%

版权声明:本文为博主原创文章,未经博主允许不得转载。
posted on
2018-01-11 09:35 
无网不进 
阅读(127
评论(0
编辑 
收藏 
举报

版权声明:本文为hbtmwangjin原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/hbtmwangjin/articles/8266852.html