Python爬取房产数据,在地图上展现!
小伙伴,我又来了,这次我们写的是用python爬虫爬取乌鲁木齐的房产数据并展示在地图上,地图工具我用的是 BDP个人版-免费在线数据分析软件,数据可视化软件 ,这个可以导入csv或者excel数据。
- 首先还是分析思路,爬取网站数据,获取小区名称,地址,价格,经纬度,保存在excel里。再把excel数据上传到BDP网站,生成地图报表
本次我使用的是scrapy框架,可能有点大材小用了,主要是刚学完用这个练练手,再写代码前我还是建议大家先分析网站,分析好数据,再去动手写代码,因为好的分析可以事半功倍,乌鲁木齐楼盘,2017乌鲁木齐新楼盘,乌鲁木齐楼盘信息 – 乌鲁木齐吉屋网 这个网站的数据比较全,每一页获取房产的LIST信息,并且翻页,点进去是详情页,获取房产的详细信息(包含名称,地址,房价,经纬度),再用pipelines保存item到excel里,最后在bdp生成地图报表,废话不多说上代码:
JiwuspiderSpider.py
# -*- coding: utf-8 -*- from scrapy import Spider,Request import re from jiwu.items import JiwuItem class JiwuspiderSpider(Spider): name = "jiwuspider" allowed_domains = ["wlmq.jiwu.com"] start_urls = [\'http://wlmq.jiwu.com/loupan\'] def parse(self, response): """ 解析每一页房屋的list :param response: :return: """ for url in response.xpath(\'//a[@class="index_scale"]/@href\').extract(): yield Request(url,self.parse_html) # 取list集合中的url 调用详情解析方法 # 如果下一页属性还存在,则把下一页的url获取出来 nextpage = response.xpath(\'//a[@class="tg-rownum-next index-icon"]/@href\').extract_first() #判断是否为空 if nextpage: yield Request(nextpage,self.parse) #回调自己继续解析 def parse_html(self,response): """ 解析每一个房产信息的详情页面,生成item :param response: :return: """ pattern = re.compile(\'<script type="text/javascript">.*?lng = \\'(.*?)\\';.*?lat = \\'(.*?)\\';.*?bname = \\'(.*?)\\';.*?\' \'address = \\'(.*?)\\';.*?price = \\'(.*?)\\';\',re.S) item = JiwuItem() results = re.findall(pattern,response.text) for result in results: item[\'name\'] = result[2] item[\'address\'] = result[3] # 对价格判断只取数字,如果为空就设置为0 pricestr =result[4] pattern2 = re.compile(\'(\d+)\') s = re.findall(pattern2,pricestr) if len(s) == 0: item[\'price\'] = 0 else:item[\'price\'] = s[0] item[\'lng\'] = result[0] item[\'lat\'] = result[1] yield item
item.py
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html import scrapy class JiwuItem(scrapy.Item): # define the fields for your item here like: name = scrapy.Field() price =scrapy.Field() address =scrapy.Field() lng = scrapy.Field() lat = scrapy.Field() pass
pipelines.py 注意此处是吧mongodb的保存方法注释了,可以自选选择保存方式
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don\'t forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html import pymongo from scrapy.conf import settings from openpyxl import workbook class JiwuPipeline(object): wb = workbook.Workbook() ws = wb.active ws.append([\'小区名称\', \'地址\', \'价格\', \'经度\', \'纬度\']) def __init__(self): # 获取数据库连接信息 host = settings[\'MONGODB_URL\'] port = settings[\'MONGODB_PORT\'] dbname = settings[\'MONGODB_DBNAME\'] client = pymongo.MongoClient(host=host, port=port) # 定义数据库 db = client[dbname] self.table = db[settings[\'MONGODB_TABLE\']] def process_item(self, item, spider): jiwu = dict(item) #self.table.insert(jiwu) line = [item[\'name\'], item[\'address\'], str(item[\'price\']), item[\'lng\'], item[\'lat\']] self.ws.append(line) self.wb.save(\'jiwu.xlsx\') return item
最后报表的数据
mongodb数据库