小伙伴,我又来了,这次我们写的是用python爬虫爬取乌鲁木齐的房产数据并展示在地图上,地图工具我用的是 BDP个人版-免费在线数据分析软件,数据可视化软件 ,这个可以导入csv或者excel数据。

  • 首先还是分析思路,爬取网站数据,获取小区名称,地址,价格,经纬度,保存在excel里。再把excel数据上传到BDP网站,生成地图报表

本次我使用的是scrapy框架,可能有点大材小用了,主要是刚学完用这个练练手,再写代码前我还是建议大家先分析网站,分析好数据,再去动手写代码,因为好的分析可以事半功倍,乌鲁木齐楼盘,2017乌鲁木齐新楼盘,乌鲁木齐楼盘信息 – 乌鲁木齐吉屋网 这个网站的数据比较全,每一页获取房产的LIST信息,并且翻页,点进去是详情页,获取房产的详细信息(包含名称,地址,房价,经纬度),再用pipelines保存item到excel里,最后在bdp生成地图报表,废话不多说上代码:

JiwuspiderSpider.py

# -*- coding: utf-8 -*- 
from scrapy import Spider,Request 
import re 
from jiwu.items import JiwuItem 
 
 
class JiwuspiderSpider(Spider): 
    name = "jiwuspider" 
    allowed_domains = ["wlmq.jiwu.com"] 
    start_urls = [\'http://wlmq.jiwu.com/loupan\'] 
 
    def parse(self, response): 
        """ 
        解析每一页房屋的list 
        :param response:  
        :return:  
        """ 
        for url in response.xpath(\'//a[@class="index_scale"]/@href\').extract(): 
            yield Request(url,self.parse_html)  # 取list集合中的url  调用详情解析方法 
 
        # 如果下一页属性还存在,则把下一页的url获取出来 
        nextpage = response.xpath(\'//a[@class="tg-rownum-next index-icon"]/@href\').extract_first() 
        #判断是否为空 
        if nextpage: 
            yield Request(nextpage,self.parse)  #回调自己继续解析 
 
 
 
    def parse_html(self,response): 
        """ 
        解析每一个房产信息的详情页面,生成item 
        :param response:  
        :return:  
        """ 
        pattern = re.compile(\'<script type="text/javascript">.*?lng = \\'(.*?)\\';.*?lat = \\'(.*?)\\';.*?bname = \\'(.*?)\\';.*?\' 
                             \'address = \\'(.*?)\\';.*?price = \\'(.*?)\\';\',re.S) 
        item = JiwuItem() 
        results = re.findall(pattern,response.text) 
        for result in results: 
            item[\'name\'] = result[2] 
            item[\'address\'] = result[3] 
            # 对价格判断只取数字,如果为空就设置为0 
            pricestr =result[4] 
            pattern2 = re.compile(\'(\d+)\') 
            s = re.findall(pattern2,pricestr) 
            if len(s) == 0: 
                item[\'price\'] = 0 
            else:item[\'price\'] = s[0] 
            item[\'lng\'] = result[0] 
            item[\'lat\'] = result[1] 
        yield item 

item.py

# -*- coding: utf-8 -*- 
 
# Define here the models for your scraped items 
# 
# See documentation in: 
# http://doc.scrapy.org/en/latest/topics/items.html 
 
import scrapy 
 
 
class JiwuItem(scrapy.Item): 
    # define the fields for your item here like: 
    name = scrapy.Field() 
    price =scrapy.Field() 
    address =scrapy.Field() 
    lng = scrapy.Field() 
    lat = scrapy.Field() 
 
    pass 

pipelines.py 注意此处是吧mongodb的保存方法注释了,可以自选选择保存方式

# -*- coding: utf-8 -*- 
 
# Define your item pipelines here 
# 
# Don\'t forget to add your pipeline to the ITEM_PIPELINES setting 
# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html 
import pymongo 
from scrapy.conf import settings 
from openpyxl import workbook 
 
class JiwuPipeline(object): 
    wb = workbook.Workbook() 
    ws = wb.active 
    ws.append([\'小区名称\', \'地址\', \'价格\', \'经度\', \'纬度\']) 
    def __init__(self): 
        # 获取数据库连接信息 
        host = settings[\'MONGODB_URL\'] 
        port = settings[\'MONGODB_PORT\'] 
        dbname = settings[\'MONGODB_DBNAME\'] 
        client = pymongo.MongoClient(host=host, port=port) 
 
        # 定义数据库 
        db = client[dbname] 
        self.table = db[settings[\'MONGODB_TABLE\']] 
 
    def process_item(self, item, spider): 
        jiwu = dict(item) 
        #self.table.insert(jiwu) 
        line = [item[\'name\'], item[\'address\'], str(item[\'price\']), item[\'lng\'], item[\'lat\']] 
        self.ws.append(line) 
        self.wb.save(\'jiwu.xlsx\') 
 
        return item 

最后报表的数据

mongodb数据库

 

版权声明:本文为duaimili原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/duaimili/p/10255959.html