决策树算法实例
机器学习算法完整版见fenghaootong-github
Titanic
预测哪些乘客会幸存下来
数据集
数据特征:
- Survived:是否存活(0代表否,1代表是)
- Pclass:社会阶级(1代表上层阶级,2代表中层阶级,3代表底层阶级)
- Name:船上乘客的名字
- Sex:船上乘客的性别
- Age:船上乘客的年龄(可能存在 NaN)
- SibSp:乘客在船上的兄弟姐妹和配偶的数量
- Parch:乘客在船上的父母以及小孩的数量
- Ticket:乘客船票的编号
- Fare:乘客为船票支付的费用
- Cabin:乘客所在船舱的编号(可能存在 NaN)
- Embarked:乘客上船的港口(C 代表从 Cherbourg 登船,Q 代表从 Queenstown 登船,S 代表从 Southampton 登船)
导入数据
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings(\'ignore\')
df = pd.read_csv(\'../DATA/Titanic.csv\', header=0)
数据整理
- 只取出三个自变量
- 将Age(年龄)缺失的数据补全
- 将Pclass变量转变为三个 Summy 变量
- 将sex转为0-1变量
subdf = df[[\'Pclass\',\'Sex\',\'Age\']]
y = df.Survived
# sklearn中的Imputer也可以
age = subdf[\'Age\'].fillna(value=subdf.Age.mean())
# sklearn OneHotEncoder也可以
pclass = pd.get_dummies(subdf[\'Pclass\'],prefix=\'Pclass\')
sex = (subdf[\'Sex\']==\'male\').astype(\'int\')
X = pd.concat([pclass,age,sex],axis=1)
X.head()
Pclass_1 | Pclass_2 | Pclass_3 | Age | Sex | |
---|---|---|---|---|---|
0 | 0 | 0 | 1 | 22.0 | 1 |
1 | 1 | 0 | 0 | 38.0 | 0 |
2 | 0 | 0 | 1 | 26.0 | 0 |
3 | 1 | 0 | 0 | 35.0 | 0 |
4 | 0 | 0 | 1 | 35.0 | 1 |
建立模型
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=33)
from sklearn import tree
clf = tree.DecisionTreeClassifier(criterion=\'entropy\', max_depth=3,min_samples_leaf=5)
clf = clf.fit(X_train,y_train)
print("准确率为:{:.2f}".format(clf.score(X_test,y_test)))
准确率为:0.83
#查看那个特征最重要
clf.feature_importances_
array([ 0.08398076, 0. , 0.23320717, 0.10534824, 0.57746383])
交叉验证
from sklearn import cross_validation
scores1 = cross_validation.cross_val_score(clf, X, y, cv=10)
scores1
array([ 0.82222222, 0.82222222, 0.7752809 , 0.87640449, 0.82022472,
0.76404494, 0.7752809 , 0.76404494, 0.83146067, 0.78409091])
from sklearn import metrics
def measure_performance(X,y,clf, show_accuracy=True,
show_classification_report=True,
show_confusion_matrix=True):
y_pred=clf.predict(X)
if show_accuracy:
print("Accuracy:{0:.3f}".format(metrics.accuracy_score(y,y_pred)),"\n")
if show_classification_report:
print("Classification report")
print(metrics.classification_report(y,y_pred),"\n")
if show_confusion_matrix:
print("Confusion matrix")
print(metrics.confusion_matrix(y,y_pred),"\n")
measure_performance(X_test,y_test,clf, show_classification_report=True, show_confusion_matrix=True)
Accuracy:0.834
Classification report
precision recall f1-score support
0 0.85 0.88 0.86 134
1 0.81 0.76 0.79 89
avg / total 0.83 0.83 0.83 223
Confusion matrix
[[118 16]
[ 21 68]]
与随机森林的比较
from sklearn.ensemble import RandomForestClassifier
clf2 = RandomForestClassifier(n_estimators=1000,random_state=33)
clf2 = clf2.fit(X_train,y_train)
scores2 = cross_validation.cross_val_score(clf2,X, y, cv=10)
clf2.feature_importances_
scores2.mean(), scores1.mean()
(0.81262938372488946, 0.80352769265690616)
版权声明:本文为htfeng原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。