【Tool】 深度学习常用工具
1. caffe 网络结构可视化
http://ethereon.github.io/netscope/quickstart.html
将网络结构复制粘贴到左侧的编辑框,按Shift+Enter就可以显示出你的网络结构
2. caffe计算图片的均值
使用caffe自带的均值计算工具
./build/tools/compute_image_mean ROOT_OF_IMAGES ROOT_TO_PLACE_MEAN_FILE
第一个参数:需要计算均值的图片路径,格式为LMDB训练数据
第二个参数:计算出来的结果保存路径
./build/tools/compute_image_mean project/SqueezeNet/SqueezeNet_v1.0/test_lmdb project/SqueezeNet/SqueezeNet_v1.0/test_mean.binaryproto
python格式的均值计算
先用LMDB格式数据,计算出二进制格式均值,然后转换成python格式均值
- #!/usr/bin/env python
- import numpy as np
- import sys,caffe
- if len(sys.argv)!=3:
- print "Usage: python convert_mean.py mean.binaryproto mean.npy"
- sys.exit()
- blob = caffe.proto.caffe_pb2.BlobProto()
- bin_mean = open( sys.argv[1] , \'rb\' ).read()
- blob.ParseFromString(bin_mean)
- arr = np.array( caffe.io.blobproto_to_array(blob) )
- npy_mean = arr[0]
- np.save( sys.argv[2] , npy_mean )
脚本保存为convert_mean.py
调用格式:
- sudo python convert_mean.py mean.binaryproto mean.npy
mean.npy是我们需要的python格式二进制文件
3. 可视化训练过程中的 training/testing loss
- NVIDIA-DIGITS: caffe训练可视化工具(数据准备,模型选择,学习曲线可视化,多GPU训练
- 训练时 –solver=solver.ptototxt 2>&1 | tee train.log, 然后使用 ./tools/extra/parse_log.py train.log将其转为两个csv 文件分别包括train loss和test loss, 然后使用以下脚本画图:
- import pandas as pd
- from matplotlib import *
- from matplotlib.pyplot import *
- train_log = pd.read_csv("./lenet_train.log.train")
- test_log = pd.read_csv("./lenet_train.log.test")
- _, ax1 = subplots(figsize=(15, 10))
- ax2 = ax1.twinx()
- ax1.plot(train_log["NumIters"], train_log["loss"], alpha=0.4)
- ax1.plot(test_log["NumIters"], test_log["loss"], \'g\')
- ax2.plot(test_log["NumIters"], test_log["acc"], \'r\')
- ax1.set_xlabel(\'iteration\')
- ax1.set_ylabel(\'train loss\')
- ax2.set_ylabel(\'test accuracy\')
- savefig("./train_test_image.png") #save image as png