Matplotlib.pyplot 三维绘图
折线图
Axes3D.
plot
(xs, ys, *args, **kwargs)
Argument | Description |
---|---|
xs, ys | x, y coordinates of vertices |
zs | z value(s), either one for all points or one for each point. |
zdir | Which direction to use as z (‘x’, ‘y’ or ‘z’) when plotting a 2D set. |
import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt mpl.rcParams[\'legend.fontsize\'] = 10 fig = plt.figure() ax = fig.gca(projection=\'3d\') theta = np.linspace(-4 * np.pi, 4 * np.pi, 100) z = np.linspace(-2, 2, 100) r = z ** 2 + 1 x = r * np.sin(theta) y = r * np.cos(theta) ax.plot(x, y, z, label=\'parametric curve\') ax.legend() plt.show()
散点图
Axes3D.
scatter
(xs, ys, zs=0, zdir=\’z\’, s=20, c=None, depthshade=True, *args, **kwargs)
Argument | Description |
---|---|
xs, ys | Positions of data points. |
zs | Either an array of the same length as xs and ys or a single value to place all points in the same plane. Default is 0. |
zdir | Which direction to use as z (‘x’, ‘y’ or ‘z’) when plotting a 2D set. |
s | Size in points^2. It is a scalar or an array of the same length as x and y. |
c | A color. c can be a single color format string, or a sequence of color specifications of length N, or a sequence of N numbers to be mapped to colors using the cmap and norm specified via kwargs (see below). Note that c should not be a single numeric RGB or RGBA sequence because that is indistinguishable from an array of values to be colormapped. c can be a 2-D array in which the rows are RGB or RGBA, however, including the case of a single row to specify the same color for all points. |
depthshade | Whether or not to shade the scatter markers to give the appearance of depth. Default is True. |
from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np def randrange(n, vmin, vmax): \'\'\' Helper function to make an array of random numbers having shape (n, ) with each number distributed Uniform(vmin, vmax). \'\'\' return (vmax - vmin) * np.random.rand(n) + vmin fig = plt.figure() ax = fig.add_subplot(111, projection=\'3d\') n = 100 # For each set of style and range settings, plot n random points in the box # defined by x in [23, 32], y in [0, 100], z in [zlow, zhigh]. for c, m, zlow, zhigh in [(\'r\', \'o\', -50, -25), (\'b\', \'^\', -30, -5)]: xs = randrange(n, 23, 32) ys = randrange(n, 0, 100) zs = randrange(n, zlow, zhigh) ax.scatter(xs, ys, zs, c=c, marker=m) ax.set_xlabel(\'X Label\') ax.set_ylabel(\'Y Label\') ax.set_zlabel(\'Z Label\') plt.show()
线框图
Axes3D.
plot_wireframe
(X, Y, Z, *args, **kwargs)
Argument | Description |
---|---|
X, Y, | Data values as 2D arrays |
Z | |
rstride | Array row stride (step size), defaults to 1 |
cstride | Array column stride (step size), defaults to 1 |
rcount | Use at most this many rows, defaults to 50 |
ccount | Use at most this many columns, defaults to 50 |
from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111, projection=\'3d\') # Grab some test data. X, Y, Z = axes3d.get_test_data(0.05) # Plot a basic wireframe. ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10) plt.show()
表面图
Axes3D.
plot_surface
(X, Y, Z, *args, **kwargs)
Argument | Description |
---|---|
X, Y, Z | Data values as 2D arrays |
rstride | Array row stride (step size) |
cstride | Array column stride (step size) |
rcount | Use at most this many rows, defaults to 50 |
ccount | Use at most this many columns, defaults to 50 |
color | Color of the surface patches |
cmap | A colormap for the surface patches. |
facecolors | Face colors for the individual patches |
norm | An instance of Normalize to map values to colors |
vmin | Minimum value to map |
vmax | Maximum value to map |
shade | Whether to shade the facecolors |
from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter import numpy as np fig = plt.figure() ax = fig.gca(projection=\'3d\') # Make data. X = np.arange(-5, 5, 0.25) Y = np.arange(-5, 5, 0.25) X, Y = np.meshgrid(X, Y) R = np.sqrt(X ** 2 + Y ** 2) Z = np.sin(R) # Plot the surface. surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm, linewidth=0, antialiased=False) # Customize the z axis. ax.set_zlim(-1.01, 1.01) ax.zaxis.set_major_locator(LinearLocator(10)) ax.zaxis.set_major_formatter(FormatStrFormatter(\'%.02f\')) # Add a color bar which maps values to colors. fig.colorbar(surf, shrink=0.5, aspect=5) plt.show()
柱状图
Axes3D.
bar
(left, height, zs=0, zdir=\’z\’, *args, **kwargs)
Argument | Description |
---|---|
left | The x coordinates of the left sides of the bars. |
height | The height of the bars. |
zs | Z coordinate of bars, if one value is specified they will all be placed at the same z. |
zdir | Which direction to use as z (‘x’, ‘y’ or ‘z’) when plotting a 2D set. |
from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np fig = plt.figure() ax = fig.add_subplot(111, projection=\'3d\') for c, z in zip([\'r\', \'g\', \'b\', \'y\'], [30, 20, 10, 0]): xs = np.arange(20) ys = np.random.rand(20) # You can provide either a single color or an array. To demonstrate this, # the first bar of each set will be colored cyan. cs = [c] * len(xs) cs[0] = \'c\' ax.bar(xs, ys, zs=z, zdir=\'y\', color=cs, alpha=0.8) ax.set_xlabel(\'X\') ax.set_ylabel(\'Y\') ax.set_zlabel(\'Z\') plt.show()
箭头图
Axes3D.
quiver
(*args, **kwargs)
Arguments:
- X, Y, Z:
- The x, y and z coordinates of the arrow locations (default is tail of arrow; see pivot kwarg)
- U, V, W:
- The x, y and z components of the arrow vectors
from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt import numpy as np fig = plt.figure() ax = fig.gca(projection=\'3d\') # Make the grid x, y, z = np.meshgrid(np.arange(-0.8, 1, 0.2), np.arange(-0.8, 1, 0.2), np.arange(-0.8, 1, 0.8)) # Make the direction data for the arrows u = np.sin(np.pi * x) * np.cos(np.pi * y) * np.cos(np.pi * z) v = -np.cos(np.pi * x) * np.sin(np.pi * y) * np.cos(np.pi * z) w = (np.sqrt(2.0 / 3.0) * np.cos(np.pi * x) * np.cos(np.pi * y) * np.sin(np.pi * z)) ax.quiver(x, y, z, u, v, w, length=0.1, normalize=True) plt.show()
2D转3D图
from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt fig = plt.figure() ax = fig.gca(projection=\'3d\') # Plot a sin curve using the x and y axes. x = np.linspace(0, 1, 100) y = np.sin(x * 2 * np.pi) / 2 + 0.5 ax.plot(x, y, zs=0, zdir=\'z\', label=\'curve in (x,y)\') # Plot scatterplot data (20 2D points per colour) on the x and z axes. colors = (\'r\', \'g\', \'b\', \'k\') x = np.random.sample(20 * len(colors)) y = np.random.sample(20 * len(colors)) labels = np.random.randint(3, size=80) # By using zdir=\'y\', the y value of these points is fixed to the zs value 0 # and the (x,y) points are plotted on the x and z axes. ax.scatter(x, y, zs=0, zdir=\'y\', c=labels, label=\'points in (x,z)\') # Make legend, set axes limits and labels ax.legend() ax.set_xlim(0, 1) ax.set_ylim(0, 1) ax.set_zlim(0, 1) ax.set_xlabel(\'X\') ax.set_ylabel(\'Y\') ax.set_zlabel(\'Z\') # Customize the view angle so it\'s easier to see that the scatter points lie # on the plane y=0 ax.view_init(elev=20., azim=-35) plt.show()
文本图
from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt fig = plt.figure() ax = fig.gca(projection=\'3d\') # Demo 1: zdir zdirs = (None, \'x\', \'y\', \'z\', (1, 1, 0), (1, 1, 1)) xs = (1, 4, 4, 9, 4, 1) ys = (2, 5, 8, 10, 1, 2) zs = (10, 3, 8, 9, 1, 8) for zdir, x, y, z in zip(zdirs, xs, ys, zs): label = \'(%d, %d, %d), dir=%s\' % (x, y, z, zdir) ax.text(x, y, z, label, zdir) # Demo 2: color ax.text(9, 0, 0, "red", color=\'red\') # Demo 3: text2D # Placement 0, 0 would be the bottom left, 1, 1 would be the top right. ax.text2D(0.05, 0.95, "2D Text", transform=ax.transAxes) # Tweaking display region and labels ax.set_xlim(0, 10) ax.set_ylim(0, 10) ax.set_zlim(0, 10) ax.set_xlabel(\'X axis\') ax.set_ylabel(\'Y axis\') ax.set_zlabel(\'Z axis\') plt.show()
3D拼图
import matplotlib.pyplot as plt from mpl_toolkits.mplot3d.axes3d import Axes3D, get_test_data from matplotlib import cm import numpy as np # set up a figure twice as wide as it is tall fig = plt.figure(figsize=plt.figaspect(0.5)) # =============== # First subplot # =============== # set up the axes for the first plot ax = fig.add_subplot(1, 2, 1, projection=\'3d\') # plot a 3D surface like in the example mplot3d/surface3d_demo X = np.arange(-5, 5, 0.25) Y = np.arange(-5, 5, 0.25) X, Y = np.meshgrid(X, Y) R = np.sqrt(X ** 2 + Y ** 2) Z = np.sin(R) surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False) ax.set_zlim(-1.01, 1.01) fig.colorbar(surf, shrink=0.5, aspect=10) # =============== # Second subplot # =============== # set up the axes for the second plot ax = fig.add_subplot(1, 2, 2, projection=\'3d\') # plot a 3D wireframe like in the example mplot3d/wire3d_demo X, Y, Z = get_test_data(0.05) ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10) plt.show()