上一篇已经介绍了二项分布和泊松分布

这一篇中将介绍均匀分布指数分布以及正态分布

3、均匀分布(uniform)

         若随机变量X的密度函数

则称随机变量X服从区间[a,b]上的均匀分布。记作X~U(a,b).

图像如下图所示:

 

 

 

 

 

 

 

 

 

 

 

 

 

均匀分布的分布函数

图像如下图所示:

 

 

 

 

 

 

 

 

 

 

 

 

 

均匀分布的数学期望E(X)=1/(2*(b+a)),方差为D(X)=1/(12*(b-a)2)。

4、指数分布

        如果随机变量X的密度函数

其中λ>0为常数,则称随机变量X服从参数为λ的指数分布。密度函数的图象如下图所示:

 

 

 

 

 

 

 

 

 

 

 

 

 

指数分布的分布函数为:

 

数学期望E(X)=1/λ,方差为D(X)=1/λ2。指数分布的分布函数图象如下图所示:

 

 

 

 

 

 

 

 

 

 

 

 

 

可以看到λ的值越大,曲线的斜率变化越快。

 

5、正态分布

        如果连续型随机变量X的密度函数为

其中,-∞<x<+∞,且-∞<μ<+∞,σ为参数。则称随机变量X服从参数为(μ,σ2)的正态分布,记作X~N(μ,σ2)

若μ=0,σ=1,则称N(0,1)为标准正态分布。

正态分布有几个特点:

①μ变化而σ不变时,图像沿着X轴移动,图像的形状不改变。如图:

 

 

 

 

 

 

 

 

 

 

 

 

 

②μ不变而σ改变时,图像的位置不变,但形态发生改变。σ越大图像就越胖。

 

 

 

 

 

 

 

 

 

 

 

 

 

③曲线在x=μ-σ和x=μ+σ处有拐点

版权声明:本文为elaron原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/elaron/archive/2012/10/23/2735696.html