求离散点的曲率
例1.
clc;clear;close all; x0 = linspace(0.1,2,100);%x0,y0验证函数离散点,可以非等间隔 y0 = 1./x0; h1 = abs(diff([x0])) ; h = [h1 h1(end)]; ht = h; yapp1 = gradient(y0)./ht; %matlab数值近似 yapp2 = del2(y0)./ht; %matlab数值近似 k2 = abs(yapp2)./(1+yapp1.^2).^(3/2); figure(2);hold on;plot(k2) figure(2);hold on;title(\'曲率曲线\') [~,maxFlag] = max(k2);%曲率最大位置 x_max = x0(maxFlag); y_max = y0(maxFlag); %画出图像 标注曲率最大点 figure(1);hold on;plot(x0,y0,\'.-\'); figure(1);hold on;plot(x_max,y_max,\'rp\') title(\'标注最大曲率点\') xlabel(\'log10((norm(B*Xk-L)))\') ylabel(\'log10((norm(Xk)))\')
来源:https://blog.csdn.net/xiaoxiao133/article/details/77916363
例2
clc; clear; close all; x0 = 0 : 0.1 : 2 * pi; y0 = sin(x0).*cos(x0); figure(1);plot(x0,y0,\'r-\'); h = abs(diff([x0(2), x0(1)])); %一阶导 ythe1 = cos( x0 ) .^2 - sin(x0).^2; %理论一阶导 yapp1 = gradient(y0, h); %matlab数值近似 figure(2); hold on; plot(x0, ythe1, \'.\'); plot(x0, yapp1, \'r\'); legend(\'理论值\', \'模拟值\'); title(\'一阶导\'); %二阶导 ythe2 = (-4) * cos(x0) .* sin(x0); %理论二阶导 yapp2 = 2 * 2 * del2(y0, h); %matlab数值近似 figure hold on; plot(x0, ythe2,\'.\'); plot(x0, yapp2,\'r\'); legend(\'理论值\', \'模拟值\'); title(\'二阶导\'); % 模拟曲率 syms x y y = sin(x) * cos(x); yd2 = diff(y, 2); yd1 = diff(y, 1); k = abs(yd2) / (1+yd1^2)^(3/2); %% 曲率公式 k1 = subs(k, x, x0); k2 = abs(yapp2)./(1+yapp1.^2).^(3/2); figure hold on; plot(x0, k1, \'.\'); plot(x0, k2, \'r\'); legend(\'理论值\', \'模拟值\'); title(\'曲率\');
来源:https://blog.csdn.net/q1302182594/article/details/50545361
例3
https://zhuanlan.zhihu.com/p/72083902
版权声明:本文为yibeimingyue原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。