流式计算概述

流式计算概述

流式计算的系统设计和实现(内存计算)

增量计算、流式计算、批量计算的区别?

  • 流式计算(流式计算是一种特殊的增量计算)

利用分布式的思想和方法,对海量“流”式数据进行实时处理,源自业务对海量数据,在“时效”的价值上的挖掘诉求

  • 实时计算(ad-hoc computing,计算不可枚举,计算在query时发生)

数据的实时计算,支持在大数据集的在线复杂实时计算(实时数据的实时计算)

  • 增量计算
优势:
  1. 中间计算结果实时产出
  2. 时效性强
  3. 平摊计算
  4. 中间计算状态不膨胀
  5. 有状态的failover(容错效率高)
  6. 批次运算(将整个数据进行recomputing,克服数据倾斜能力,降低数据倾斜对整个计算性能的退化的影响)

增量计算与流式计算

应用场景
  1. 日志采集与在线分析
  2. 大数据的预处理
  3. 风险监测与告警(对交易业务的虚假交易进行实时监测与分析)
  4. 网站与移动应用统计分析(双11运营、淘宝量子统计等各类统计业务分析中,提供实时的业务统计分析报表)
  5. 网络安全监测(实时监控、实时分析、实时监测、实时对抗、在线服务计量与计费管理系统)
  6. 工业4.0(实时计算、流式计算)
  7. 物联网(实时计算、流式计算)
特点
1.数据特点 –> 流

由业务产生的有向无界的数据流

  1. 不可控性

到达时机:不同的数据通路,到达的时机完全不可控
UPDATE语句:对系统后续的设计、容错及语义方面产生极大的影响
相关数据顺序
数据质量
数据规模
离线计算、批量计算:数据仓库的质量体系构筑的比较完善

  1. 体系缺失

数据源的治理
数据质量的治理

  1. 时效性要求(对整个计算处理的数据力度,有更高的要求)

容错方案
体系结构
结果输出

2.处理粒度最小

对整个系统架构具有决定性影响

3.处理算子对状态的影响不同
  1. 无状态计算
  2. 有状态计算
  3. 数据进入顺序有要求
4.输出要求
  1. 一致性
  2. 连贯性
5.计算特点
  1. 时效性:高
  2. 质量:准
  3. 容错:稳
  4. 多样性:多(精确、只多不少、丢sla)

版权声明:本文为Mrbelong原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/Mrbelong/p/7605244.html