Hadoop完全分布式安装教程
一、软件版本
Hadoop版本号:hadoop-2.6.0.tar;
VMWare版本号:VMware-workstation-full-11.0.0-2305329
Ubuntu版本号:ubuntu-14.04.1-desktop-i386
其他版本也可
Jdk版本号:jdk-6u45-linux-i586.bin
后三项对版本要求不严格,如果使用Hbase1.0.0版本,需要JDK1.8以上版本。
二、安装教程
1、VMWare安装教程
VMWare虚拟机是个软件,安装后可用来创建虚拟机,在虚拟机上再安装系统,在这个虚拟系统上再安装应用软件,所有应用就像操作一台真正的电脑,
请直接到VMWare官方网站下载相关软件
http://www.vmware.com/cn/products/workstation/workstation-evaluation
以上链接如果因为官方网站变动发生变化,可以直接在搜索引擎中搜索VMWare来查找其下载地址,建议不要在非官方网站下载。
安装试用版后有30天的试用期。
2、Ubuntu安装教程
打开VMWare点击创建新的虚拟机
选择典型
点击浏览
选择ubuntu
暂时只建两个虚拟机,注意分别给两个虚拟机起名为Ubuntu1和Ubuntu2;也可以按照自己的习惯取名,但是后续的许多配置文件要相应更改,会带来一些麻烦。
密码也请记牢,后面会经常使用。
3、安装VMWare-Tools
Ubuntu中会显示有光盘插入了光驱
双击打开光盘将光盘中VMwareTools-9.6.1-1378637.tar.gz复制到桌面,复制方法类似windows系统操作。
点击Extract Here
从菜单打开Ubuntu的控制终端
cd Desktop/vmware-tools-distrib/
sudo ./vmware-install.pl
输入root密码,一路回车,重启系统
注意: ubuntu安装后,
root 用户默认是被锁定了的,不允许登录,也不允许“ su”
到 root 。
允许 su 到
root
非常简单,下面是设置的方法:
注意:ubuntu安装后要更新软件源:
cd /etc/apt
sudo apt-get update
安装各种软件比较方便
4、用户创建
创建hadoop用户组:
sudo addgroup hadoop
创建hduser用户:sudo
adduser -ingroup hadoop hduser
注意这里为hduser用户设置同主用户相同的密码
为hadoop用户添加权限:sudo
gedit /etc/sudoers,在root ALL=(ALL) ALL下添加
hduser ALL=(ALL) ALL。
设置好后重启机器:sudo reboot
切换到hduser用户登录;
5、主机配置
Hadoop集群中包括2个节点:1个Master,2个Salve,其中虚拟机Ubuntu1既做Master,也做Slave;虚拟机Ubuntu2只做Slave。
配置hostname:Ubuntu下修改机器名称:
sudo gedit /etc/hostname ,改为Ubuntu1;修改成功后用重启命令:hostname,查看当前主机名是否设置成功;
此时可以用虚拟机克隆的方式再复制一个。(先关机 vmware 菜单–虚拟机-管理–克隆)
注意:修改克隆的主机名为Ubuntu2。
配置hosts文件:查看Ubuntu1和Ubuntu2的ip:ifconfig;
打开hosts文件:sudo
gedit /etc/hosts,添加如下内容:
192.168.xxx.xxx Ubuntu1
192.168.xxx.xxx Ubuntu2
注意这里的ip地址需要学员根据自己的电脑的ip设置。
在Ubuntu1上执行命令:ping
Ubuntu2,若能ping通,则说明执行正确。
6、SSH无密码验证配置
安装ssh服务器,默认安装了ssh客户端:sudo
apt-get install openssh-server;
在Ubuntu1上生成公钥和秘钥:ssh-keygen
-t rsa -P “” ;
查看路径
/home/hduser/.ssh文件里是否有id_rsa和id_rsa.pub;
将公钥赋给authorized_keys:cat
$HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys;
无密码登录:ssh
localhost;
无密码登陆到Ubuntu2,在Ubuntu1上执行:ssh-copy-id
Ubuntu2,查看Ubuntu2的/home/hduser/.ssh文件里是否有authorized_keys;
在Ubuntu1上执行命令:ssh
Ubuntu2,首次登陆需要输入密码,再次登陆则无需密码;
若要使Ubuntu2无密码登录Ubuntu1,则在Ubutu2上执行上述相同操作即可。
注:若无密码登录设置不成功,则很有可能是文件夹/文件权限问题,修改文件夹/文件权限即可。sudo
chmod 777 “文件夹” 即可。
7、Java环境配置
获取opt文件夹权限:sudo chmod 777 /opt
将java压缩包放在/opt/,root模式执行sudo
./jdk-6u45-linux-i586.bin
配置jdk的环境变量:sudo gedit
/etc/profile,将一下内容复制进去并保存
# java
export
JAVA_HOME=/opt/jdk1.6.0_45
export JRE_HOME=$JAVA_HOME/jre
export
CLASSPATH=$JAVA_HOME/lib:$JRE_HOME/lib:$CLASSPATH
export
PATH=$JAVA_HOME/bin:$JRE_HOME/bin:$PATH
执行命令,使配置生效:source
/etc/profile;
执行命令:java
-version,若出现java版本号,则说明安装成功。
8、hadoop集群安装
8.1 安装
将hadoop压缩包hadoop-2.6.0.tar.gz放在/home/hduser目录下,并解压缩到本地,重命名为hadoop;配置hadoop环境变量,执行:sudo
gedit /etc/profile,将以下复制到profile内:
#hadoop
export
HADOOP_HOME=/home/hduser/hadoop
export
PATH=$HADOOP_HOME/bin:$PATH
执行:source /etc/profile
注意:Ubuntu1、ubuntu2都要配置以上步骤;
8.2 配置
主要涉及的配置文件有7个:都在/hadoop/etc/hadoop文件夹下,可以用gedit命令对其进行编辑。
(1)进去hadoop配置文件目录
cd
/home/hduser/hadoop/etc/hadoop/
(2)配置 hadoop-env.sh文件–>修改JAVA_HOME
gedit hadoop-env.sh
添加如下内容
# The java implementation to use.
export JAVA_HOME=/opt/jdk1.6.0_45
(3)配置 yarn-env.sh 文件–>>修改JAVA_HOME
添加如下内容
# some Java parameters
export
JAVA_HOME=/opt/jdk1.6.0_45
(4)配置slaves文件–>>增加slave节点
(删除原来的localhost)
添加如下内容
Ubuntu1
Ubuntu2
(5)配置 core-site.xml文件–>>增加hadoop核心配置
(hdfs文件端口是9000、file:/home/hduser/hadoop/tmp)
添加如下内容
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://Ubuntu1:9000</value>
</property>
<property>
<name>io.file.buffer.size</name>
<value>131072</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>file:/home/hduser/hadoop/tmp</value>
<description>Abasefor other temporary
directories.</description>
</property>
<property>
<name>hadoop.native.lib</name>
<value>true</value>
<description>Should native hadoop libraries, if present, be
used.</description>
</property>
</configuration>
(6)配置 hdfs-site.xml 文件–>>增加hdfs配置信息
(namenode、datanode端口和目录位置)
<configuration>
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>Ubuntu1:9001</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:/home/hduser/hadoop/dfs/name</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value> file:/home/hduser/hadoop/dfs/data</value>
</property>
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
<property>
<name>dfs.webhdfs.enabled</name>
<value>true</value>
</property>
</configuration>
(7)配置 mapred-site.xml 文件–>>增加mapreduce配置
(使用yarn框架、jobhistory使用地址以及web地址)
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>mapreduce.jobhistory.address</name>
<value>Ubuntu1:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value> Ubuntu1:19888</value>
</property>
</configuration>
(8)配置 yarn-site.xml 文件–>>增加yarn功能
<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>Ubuntu1:8032</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>Ubuntu1:8030</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>Ubuntu1:8035</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address</name>
<value>Ubuntu1:8033</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address</name>
<value>Ubuntu1:8088</value>
</property>
</configuration>
(9)将配置好的Ubuntu1中/hadoop/etc/hadoop文件夹复制到到Ubuntu2对应位置(删除Ubuntu2原来的文件夹/hadoop/etc/hadoop)
scp
-r /home/hduser/hadoop/etc/hadoop/
hduser@Ubuntu2:/home/hduser/hadoop/etc/
8.3 验证
下面验证Hadoop配置是否正确:
(1)格式化namenode:
hduser@Ubuntu1:~$ cd hadoop
hduser@Ubuntu1:~/hadoop$ ./bin/hdfs namenode -format
hduser@Ubuntu2:~$ cd hadoop
hduser@Ubuntu2:~/hadoop$ ./bin/hdfs namenode -format
(2)启动hdfs:
hduser@Ubuntu1:~/hadoop$ ./sbin/start-dfs.sh
15/04/27
04:18:45 WARN util.NativeCodeLoader: Unable to load native-hadoop library for
your platform… using builtin-java classes where applicable
Starting
namenodes on [Ubuntu1]
Ubuntu1:
starting namenode, logging to
/home/hduser/hadoop/logs/hadoop-hduser-namenode-Ubuntu1.out
Ubuntu1:
starting datanode, logging to /home/hduser/hadoop/logs/hadoop-hduser-datanode-Ubuntu1.out
Ubuntu2:
starting datanode, logging to
/home/hduser/hadoop/logs/hadoop-hduser-datanode-Ubuntu2.out
Starting
secondary namenodes [Ubuntu1]
Ubuntu1:
starting secondarynamenode, logging to /home/hduser/hadoop/logs/hadoop-hduser-secondarynamenode-Ubuntu1.out
15/04/27
04:19:07 WARN util.NativeCodeLoader: Unable to load native-hadoop library for
your platform… using builtin-java classes where applicable
查看java进程(Java Virtual Machine Process Status Tool)
hduser@Ubuntu1:~/hadoop$ jps
8008 NameNode
8443 Jps
8158 DataNode
8314
SecondaryNameNode
(3)停止hdfs:
hduser@Ubuntu1:~/hadoop$ ./sbin/stop-dfs.sh
Stopping
namenodes on [Ubuntu1]
Ubuntu1:
stopping namenode
Ubuntu1:
stopping datanode
Ubuntu2:
stopping datanode
Stopping
secondary namenodes [Ubuntu1]
Ubuntu1:
stopping secondarynamenode
查看java进程
hduser@Ubuntu1:~/hadoop$ jps
8850 Jps
(4)启动yarn:
hduser@Ubuntu1:~/hadoop$ ./sbin/start-yarn.sh
starting yarn
daemons
starting
resourcemanager, logging to /home/hduser/hadoop/logs/yarn-hduser-resourcemanager-Ubuntu1.out
Ubuntu2:
starting nodemanager, logging to
/home/hduser/hadoop/logs/yarn-hduser-nodemanager-Ubuntu2.out
Ubuntu1:
starting nodemanager, logging to
/home/hduser/hadoop/logs/yarn-hduser-nodemanager-Ubuntu1.out
查看java进程
hduser@Ubuntu1:~/hadoop$
jps
8911
ResourceManager
9247 Jps
9034
NodeManager
(5)停止yarn:
hduser@Ubuntu1:~/hadoop$ ./sbin/stop-yarn.sh
stopping yarn
daemons
stopping
resourcemanager
Ubuntu1:
stopping nodemanager
Ubuntu2:
stopping nodemanager
no
proxyserver to stop
查看java进程
hduser@Ubuntu1:~/hadoop$
jps
9542 Jps
(6)查看集群状态:
首先启动集群:./sbin/start-dfs.sh
hduser@Ubuntu1:~/hadoop$
./bin/hdfs dfsadmin -report
Configured
Capacity: 39891361792 (37.15 GB)
Present
Capacity: 28707627008 (26.74 GB)
DFS Remaining:
28707569664 (26.74 GB)
DFS Used: 57344
(56 KB)
DFS Used%: 0.00%
Under replicated
blocks: 0
Blocks with
corrupt replicas: 0
Missing blocks:
0
————————————————-
Live datanodes
(2):
Name:
192.168.159.132:50010 (Ubuntu2)
Hostname:
Ubuntu2
Decommission
Status : Normal
Configured
Capacity: 19945680896 (18.58 GB)
DFS Used: 28672
(28 KB)
Non DFS Used:
5575745536 (5.19 GB)
DFS Remaining:
14369906688 (13.38 GB)
DFS Used%: 0.00%
DFS Remaining%:
72.05%
Configured Cache
Capacity: 0 (0 B)
Cache Used: 0 (0
B)
Cache Remaining:
0 (0 B)
Cache Used%:
100.00%
Cache
Remaining%: 0.00%
Xceivers: 1
Last contact:
Mon Apr 27 04:26:09 PDT 2015
Name:
192.168.159.131:50010 (Ubuntu1)
Hostname:
Ubuntu1
Decommission
Status : Normal
Configured
Capacity: 19945680896 (18.58 GB)
DFS Used: 28672
(28 KB)
Non DFS Used:
5607989248 (5.22 GB)
DFS Remaining:
14337662976 (13.35 GB)
DFS Used%: 0.00%
DFS Remaining%:
71.88%
Configured Cache
Capacity: 0 (0 B)
Cache Used: 0 (0
B)
Cache Remaining:
0 (0 B)
Cache Used%:
100.00%
Cache
Remaining%: 0.00%
Xceivers: 1
Last contact:
Mon Apr 27 04:26:08 PDT 2015
(7)查看hdfs:http://Ubuntu1:50070/
三、运行wordcount程序
(1)创建 file目录
hduser@Ubuntu1:~$ mkdir file
(2)在file创建file1.txt、file2.txt并写内容(在图形界面)
分别填写如下内容
file1.txt输入内容:Hello world
hi HADOOP
file2.txt输入内容:Hello hadoop
hi CHINA
创建后查看:
hduser@Ubuntu1:~ /hadoop $ cat file/file1.txt
Hello world
hi HADOOP
hduser@Ubuntu1:~ /hadoop $ cat file/file2.txt
Hello hadoop
hi CHINA
(3)在hdfs创建/input2目录
hduser@Ubuntu1:~/hadoop$ ./bin/hadoop fs -mkdir /input2
(4)将file1.txt、file2.txt文件copy到hdfs /input2目录
hduser@Ubuntu1:~/hadoop$ ./bin/hadoop fs -put file/file*.txt
/input2
(5)查看hdfs上是否有file1.txt、file2.txt文件
hduser@Ubuntu1:~/hadoop$ bin/hadoop fs -ls /input2/
Found 2 items
-rw-r–r– 2 hduser supergroup 21 2015-04-27 05:54 /input2/file1.txt
-rw-r–r– 2 hduser supergroup 24 2015-04-27 05:54 /input2/file2.txt
(6)执行wordcount程序
先启动hdfs和yarn
hduser@Ubuntu1:~/hadoop$ ./bin/hadoop jar
share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar wordcount /input2/
/output2/wordcount1
15/04/27 05:57:17 WARN util.NativeCodeLoader: Unable to
load native-hadoop library for your platform… using builtin-java classes
where applicable
15/04/27 05:57:17 INFO client.RMProxy: Connecting to
ResourceManager at Ubuntu1/192.168.159.131:8032
15/04/27 05:57:19 INFO input.FileInputFormat: Total input
paths to process : 2
15/04/27 05:57:19 INFO mapreduce.JobSubmitter: number of
splits:2
15/04/27 05:57:19 INFO mapreduce.JobSubmitter: Submitting
tokens for job: job_1430138907536_0001
15/04/27 05:57:20 INFO impl.YarnClientImpl: Submitted
application application_1430138907536_0001
15/04/27 05:57:20 INFO mapreduce.Job: The url to track
the job: http://Ubuntu1:8088/proxy/application_1430138907536_0001/
15/04/27 05:57:20 INFO mapreduce.Job: Running job:
job_1430138907536_0001
15/04/27 05:57:32 INFO mapreduce.Job: Job
job_1430138907536_0001 running in uber mode : false
15/04/27 05:57:32 INFO mapreduce.Job: map 0% reduce 0%
15/04/27 05:57:43 INFO mapreduce.Job: map 100% reduce 0%
15/04/27 05:57:58 INFO mapreduce.Job: map 100% reduce 100%
15/04/27 05:57:59 INFO mapreduce.Job: Job
job_1430138907536_0001 completed successfully
15/04/27 05:57:59 INFO mapreduce.Job: Counters: 49
File System
Counters
FILE:
Number of bytes read=84
FILE:
Number of bytes written=317849
FILE:
Number of read operations=0
FILE:
Number of large read operations=0
FILE:
Number of write operations=0
HDFS:
Number of bytes read=247
HDFS:
Number of bytes written=37
HDFS:
Number of read operations=9
HDFS:
Number of large read operations=0
HDFS:
Number of write operations=2
Job Counters
Launched
map tasks=2
Launched
reduce tasks=1
Data-local
map tasks=2
Total
time spent by all maps in occupied slots (ms)=16813
Total
time spent by all reduces in occupied slots (ms)=12443
Total
time spent by all map tasks (ms)=16813
Total
time spent by all reduce tasks (ms)=12443
Total
vcore-seconds taken by all map tasks=16813
Total
vcore-seconds taken by all reduce tasks=12443
Total
megabyte-seconds taken by all map tasks=17216512
Total
megabyte-seconds taken by all reduce tasks=12741632
Map-Reduce
Framework
Map
input records=2
Map
output records=8
Map
output bytes=75
Map
output materialized bytes=90
Input
split bytes=202
Combine
input records=8
Combine output records=7
Reduce
input groups=5
Reduce
shuffle bytes=90
Reduce
input records=7
Reduce
output records=5
Spilled
Records=14
Shuffled
Maps =2
Failed
Shuffles=0
Merged
Map outputs=2
GC
time elapsed (ms)=622
CPU
time spent (ms)=2000
Physical
memory (bytes) snapshot=390164480
Virtual
memory (bytes) snapshot=1179254784
Total
committed heap usage (bytes)=257892352
Shuffle
Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input
Format Counters
Bytes
Read=45
File Output
Format Counters
Bytes
Written=37
(7)查看运行结果
hduser@Ubuntu1:~/hadoop$ ./bin/hdfs dfs -cat
/output2/wordcount1/*
CHINA 1
Hello 2
hadoop 2
hi 2
world 1
——————————————
显示出以上结果,表明您已经成功安装了Hadoop!
Eclipse开发环境的建立
1, 需要下载eclipse
2, 需要插件,插件的终极解决方案是
https://github.com/winghc/hadoop2x-eclipse-plugin下载并编译。
也可用提供好的插件。
3, 复制编译好的jar到eclipse插件目录,重启eclipse
4, 配置
hadoop 安装目录
window ->preference ->
hadoop Map/Reduce -> Hadoop installation directory
5, 配置Map/Reduce 视图
window ->Open Perspective ->
other->Map/Reduce -> 点击“OK”
windows → show view →
other->Map/Reduce Locations-> 点击“OK”
6,在“Map/Reduce Locations”
Tab页
点击图标<大象+>或者在空白的地方右键,选择“New Hadoop location…”,弹出对话框“New hadoop location…”,
进行相应配置
MR Master和DFS Master配置必须和mapred-site.xml和core-site.xml等配置文件一致
7,打开Project Explorer,查看HDFS文件系统。
8,新建Map/Reduce任务
需要先启动Hadoop服务
File->New->project->Map/Reduce
Project->Next
编写WordCount类:
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object,
Text, Text, IntWritable>{
private final static IntWritable
one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context
context) throws IOException, InterruptedException {
// Object
key, Text value就是输入的key和value, Context记录输入的key和value
StringTokenizer itr = new
StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends
Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new
IntWritable();
public void reduce(Text key,
Iterable<IntWritable> values,
Context
context
) throws
IOException, InterruptedException {
//reduce函数与map函数基本相同,但value是一个迭代器的形式Iterable<IntWritable>
values,也就是说reduce的输入是一个key对应一组的值的value
int sum = 0;
for (IntWritable val : values)
{
sum += val.get();
}
result.set(sum);
context.write(key, result); //结果例如World, 2
}
}
public static void main(String[]
args) throws Exception {
Configuration conf = new
Configuration();
Job job = Job.getInstance(conf,
“word count”);//指定job名称,及运行对象
job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class); //指定map函数
job.setCombinerClass(IntSumReducer.class); // combiner整合
job.setReducerClass(IntSumReducer.class);//设定reduce函数
job.setOutputKeyClass(Text.class);//设定输出key数据类型
job.setOutputValueClass(IntWritable.class);//设定输出value数据类型
FileInputFormat.addInputPath(job,
new Path(args[0]));//设定输入目录
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
音乐记录倒排索引
MapReduce程序开发
1、 我们的任务要求是:
有一批音乐播放记录清单,包含歌曲被播放的用户
tom LittleApple
jack YesterdayOnceMore
Rose MyHeartWillGoOn
jack LittleApple
John MyHeartWillGoOn
kissinger LittleApple
kissinger YesterdayOnceMore
2、 我们的任务输出结果是:
完成一个倒排索引形成的文本文件如下
LittleApple tom| jack| kissinger
YesterdayOnceMore jack|
kissinger
MyHeartWillGoOn Rose|
John
3、 我们的算法思路是:
将源文件按照每行进行分割,在mapper 过程中以歌曲名(LittleApple)作为key,以用户名(Tom)作为value,在reducer过程中是相同个歌曲码汇总,输出为倒排索引。
tom LittleApple
jack YesterdayOnceMore
Rose MyHeartWillGoOn
Map函数对应的<key,value>是
<LittleApple, Tom>
< YesterdayOnceMore, Jack >
< MyHeartWillGoOn, Rose>
Reduce函数将歌曲汇总
输出是
LittleApple tom
Jack
Kissinger
最终输出到HDFS为结果
LittleApple tom| jack| kissinger
YesterdayOnceMore jack|
kissinger
MyHeartWillGoOn Rose|
John
4、 倒排索引源程序的注释:
import
java.io.IOException;
import
org.apache.hadoop.conf.Configuration;
import
org.apache.hadoop.conf.Configured;
import
org.apache.hadoop.fs.Path;
import
org.apache.hadoop.io.*;
import
org.apache.hadoop.mapreduce.*;
import
org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import
org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import
org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import
org.apache.hadoop.util.Tool;
import
org.apache.hadoop.util.ToolRunner;
public
class Test_1 extends Configured implements Tool
{
enum Counter
{
LINESKIP, // 出错的行
}
public static class Map extends
Mapper<LongWritable,Text,Text,Text>
{
public void map(LongWritable key, Text
value, Context context) throws IOException, InterruptedException
{
String
line = value.toString(); // 读取源数据,将其字符串化
try
{
// 数据处理
String[] lineSplit = line.split(”
“);
//将数据用空格进行分割,例如Tom LittleApple
String anum = lineSplit[0]; //此处anum为Tom
String bnum = lineSplit[1]; //此处bnum为 LittleApple
context.write(new Text(bnum), new
Text(anum));
// 输出到context的键值对为<LittleApple ,tom>
}
catch
(java.lang.ArrayIndexOutOfBoundsException e)
//出错保障
{
context.getCounter(Counter.LINESKIP).increment(1);
return;
}
}
}
public static class Reduce extends
Reducer<Text,Text,Text,Text>
{
public void reduce(Text key,
Iterable<Text> values, Context context) throws IOException,
InterruptedException
{
String valueString;
String out = “”;
for (Text value : values)
{
valueString = value.toString();
out += valueString +
“|”; //将听同一歌曲用|分隔符隔开累加
//System.out.println(“Ruduce:key=”+key+” value=”+value);
}
context.write(key, new Text(out));
}
}
@Override
public int run(String[] args) throws
Exception
{
Configuration conf = this.getConf();
Job job = new Job(conf,
“Test_1”); // 任务名
job.setJarByClass(Test_1.class); // 指定Class
FileInputFormat.addInputPath(job, new
Path(args[0])); // 输入路径
FileOutputFormat.setOutputPath(job, new
Path(args[1])); // 输出路径
job.setMapperClass(Map.class); // 调用上面Map类作为Map任务代码
job.setReducerClass(Reduce.class); // 调用上面Reduce类作为Reduce任务代码
job.setOutputFormatClass(TextOutputFormat.class);
job.setOutputKeyClass(Text.class); // 指定输出的KEY的格式
job.setOutputValueClass(Text.class); // 指定输出的VALUE的格式
job.waitForCompletion(true);
return job.isSuccessful()?0:1;
}
public static void main(String[] args)
throws Exception
{
// 运行任务
int res = ToolRunner.run(new
Configuration(), new Test_1(), args);
System.exit(res);
}
}
5、 注意设置输入输出的路径:
可以在eclipse上直接运行,也可打成jar包后运行。