用户画像案例一:汽车精准营销
用户画像案例一:汽车精准营销
做汽车精准营销项目已经快一年的时间了,但是说起正真的用户画像,又不知道该如何说起,所以我就开始从数据的处理流程一点点的来引进用户画像的建立。
1、数据的处理流程
我们用到的技术就是用java写mapreduce框架来实现用户上网数据的url的识别,这里识别用的是正则表达式,其次就是模型的建立使用hive就行处理。
首先我们的数据来源有两个方面:一个是客户的数据,还有一个是网络爬虫数据。
- 客户的数据有:用户手机上网日志(识别上网的url)、基础信息(性别、年龄、省份、地市等)、语音话单(综采话单、计费话单)、App汇总表、用户搜索关键字解析表、综采短信话单等;
- 爬虫数据:在url中我们解析出来一般是汽车的车型id,但在实际的使用中我们用到的却是汽车的名称,所以这就需要爬取汽车网站的数据来进行匹配处理。电话营销会显的更直观,更可靠,所以我们定义了不同的口径去分析用户的购车意向。
数据的处理流程说明如下:
- 对原始上网日志数据进行初筛处理(由客户来处理,我们提供规则),因为全国的上网日志数据是特别大的,一天大概产生80-90T。所有先由客户初筛出我们需要的数据,我们做的汽车行业,就会只拿出汽车行业相关的数据推送给我们。
- 初筛之后的数据我们还需要清洗一遍,过滤掉号码异常的,过滤掉url异常的数据。此过程除了清洗最重要作用还是识别,识别url的网站来源、访问的板块(例如:首页、图片、价格、论坛等)、车型id、一手车还是二手车等。
- 数据的匹配和模型的建立,根据用户的浏览行为和一些基础的标签,判断意向购车用户,给用户赋值不同的等级类别。
2、用户画像的建立
我们的用户画像可以分为三大类:用户的基本属性、汽车的基本属性、经销商的基本属性,根据客户的现有数据建立模型,分析现有标签对客户意向的影响。根据多个标签属性综合分析可以得到三类用户:意向阶段、对比阶段、决策阶段。
1)用户属性:年龄、性别、城市
- 年龄段:将年龄按照5岁为一个阶段划分为不同的年龄段,25—50岁之间为购车的主力人群;
- 性别:购车方面男女的比例是8:2,男士占主要的地位;
- 城市等级:将城市划分成不同的等级,从城市等级看,主要集中二三四线城市,三线城市男性、二线城市及六线小城市女性买车偏好度更高。高等级城市对高价位车型明显偏好,低线城市10万元以下价位车型偏好度高于其它等级城市;二线城市对15万以上车型偏好度显著高于其他城市;
2)汽车属性:品牌、最低价、最高价、级别、车身形式、网站、国别、渠道、能源形式、是否纯电动
- 品牌:品牌的销量与用户的年龄、性别是密不可分的。分析数据我们得到20—25岁人群更偏向于国产品牌,25—30岁人群更偏向于大品牌,30—35岁人群更偏向合资品牌,35—40岁人群偏好成熟稳重品牌,40—50岁人群对商用车品牌更青睐。女性用户购车品牌中合资品牌比例明显高于男性用户,合资品牌偏向中高端品牌;
- 价格段:女性用户更偏向于高端车型,男性用户购车方面更偏向于实用为主。高等级城市对高价位车型明显偏好,低线城市10万元以下价位车型偏好度高于其它等级城市。35—45岁对50万以上高端车型购买比例最高;30—40岁对25—40万的中高端品牌车型购买比例最高;而25—35岁用户对5—10万的中低端品牌车型购买比例最高。
3)经销商属性:主营品牌、电话类型、经销商名称
- 这些标签主要是针对用户的语音话单进行处理的,这里的电话可以分为:官网的400电话,以0开头的座机号和一些手机号,不同的经销商所主营的品牌的销售额是不一样的,根据他电话咨询经销商的情况我们可以推断用户的意向情况,这里也刚好和汽车属性的判断很好的衔接上了。
4)已有车用户的建立
已有车用户的建立,对模型的意向结果是至关重要的。我们重点分析的是用户的上网行为,比如某个用户是汽车爱好者,他每天都会有浏览汽车网站的行为,但是他没有买车的意向或者已经有车了,我们就需要排除这样的用户,那么应该怎样做呢:
- 可以从行为分析:爱好者一般好看汽车新闻、图片、论坛等模块,而意向客户会偏重参数配置、报价、询底价、预约试驾等模块。这样可以初步的找到爱好的用户;
- 用户访问的app:如果用户使用这些app,车轮查违章、途虎养车网、58违章查询、导航犬等app,则可以判断此用户是用车用户;
- 根据已营销用户的反馈情况就可以确定那些用户是用车用户,从而在底层的模型中去做过滤;
说明:以上的结果全是我们自己的分析整合得出的结论,不代表整个行业的现象,望周知。
3、模型数据的输出
我们是从不同的口径去得到模型结果的,这里我们叫做模型规则,不同的规则用户的意向率是不同的,而且我们是根据用户的需求去下发数据的,这样我们的规则就是必不可少的。(一下规则仅供参考)
- 规则1:浏览汽车页面的用户,这里一个用户可能访问多个网站、同一个网站用户可以访问不同的车型,这里我们处理时,一个用户是只能保存一条访问记录的。首先选择汽车车型不为空的数据,然后按网站统计的用户的停留时长,停留时间最长的用户网站数据带出,然后根据基础标签得到用户的等级,再排除已有车的用户,就可以得到规则1的结果;
- 规则2:直接通过电话咨询的用户,从用户的综采话单、MB计费话单、CB计费话单和自建表的电话相互关联,找到主动拨打电话咨询的用户;
有很多规则这里就不详细的一一说明了,最终的结果是将所有的规则合并写到一张表中去做外呼处理。