0.目的

  刚刚学习faster rcnn目标检测算法,在尝试跑通github上面Xinlei Chen的tensorflow版本的faster rcnn代码时候遇到很多问题(我真是太菜),代码地址如下:

https://github.com/endernewton/tf-faster-rcnn

1. 运行环境配置

  代码的README里面说明了,环境要求既有是这个git里面的,还有就是rbg的caffe代码中也有了一些环境。基本上包括:

python2.7

CUDA(并行计算库)>=6.0

cudnn(深度学习库)

cython,

opencv-python

easydict=1.6

  当然这只是跑通代码的环境,并没有那么苛刻的。

1.1 检查环境

  检查环境的目的是为了安装TensorFlow,首先是

1.1.1 Linux 内核和发行版

  需要查看 linux内核和发行版,来确定后续一些软件的安装版本选择。《如何查看LINUX发行版的名称及其版本号》:https://www.qiancheng.me/post/coding/show-linux-issue-version

  查看Linux内核

uname -a

  查看Linux发行版

cat /etc/redhat-release #centos下面的命令

  

  我用的是 centos,在运行demo期间没发现什么问题,但最好是用Ubutu 14或者16吧

 

1.1.2 检查cuda 和cudnn的版本

chen 推荐的是 TensorFlow 的 r1.2 版本,应该是安装r1.2推荐的cuda和cudnn,但是因为我没有服务器的root权限,无法更改cuda和cudnn,所以只能选择一个和本机环境相对应的tensorflow版本了。

注意这里如果不安装匹配的版本,可能会出现cudnn库找不到的情况,(别问我怎么知道的),https://stackoverflow.com/questions/42013316/after-building-tensorflow-from-source-seeing-libcudart-so-and-libcudnn-errors,如果有root权限的,最好是装r1.2版本的,当然要查好r1.2支持的cuda和cudnn,方法也在下面。

查看cuda的版本:http://blog.csdn.net/zhangjunhit/article/details/76532196

cat /usr/local/cuda/version.txt

查看cudnn版本:

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

  我的cuda=8,cudnn=6

  到tensorflow 的官网上查对应的TF版本:https://www.tensorflow.org/install/install_sources#common_installation_problems

如果没有GPU的就安装cpu版本,README里面说cpu也是能运行的,我没试。

1.2 安装Anaconda 和TensorFlow

  tensorflow r1.4的安装教程:https://www.tensorflow.org/versions/r1.4/install/install_linux?hl=zh-cn,我是按照Anaconda的方法弄的,比较简单。

  因为我的系统上面安装了anaconda,之前装了python3。为了方便,直接用anaconda新开了一个环境,装了python2.7。教程:https://www.jianshu.com/p/d2e15200ee9b

  创建环境:

conda create -n tensorflow python=2.7

  进入环境:

source activate tensorflow 

  前面这样显示就对了(我的名字叫python27,你的应该是tensorflow)

  使用pip安装tensorflow:

pip install --ignore-installed --upgrade tfBinaryURL

  注意这里的 tfBinaryURL 是 URL of the TensorFlow Python package ,但这里面都是谷歌的镜像,要是没挂科学上网的话应该是访问不到的,我是用的阿里的镜像:http://mirrors.aliyun.com/pypi/simple,自己找合适的版本,我用的是http://mirrors.aliyun.com/pypi/packages/68/b4/8731e144a68a6044b8eba47f51f0a862c696b0c016c8512ca2aa3916f62a/tensorflow_gpu-1.4.0rc1-cp27-cp27mu-manylinux1_x86_64.whl。

  更多镜像在:https://www.jianshu.com/p/502638407add

  输入上面的命令之后就成功了,运行了一下官方的测试:

  成功输出:Hello,TensorFlow!

1.3 安装其他依赖

  保持在tensorflow这个环境中,继续用pip安装cythonopencv-pythoneasydict这三个库。

pip install cython
pip install opencv-python
pip install easydict==1.6

  

 

  链接cython模块的时候出现了一个警告,具体什么原因我也不太清楚,就暂时没有管它,最后也是能运行demo的。

cc1plus: 警告:command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++ [默认启用]
In file included from /home/luoguiyang/env/anaconda3/envs/python27/lib/python2.7/site-packages/numpy/core/include/numpy/ndarraytypes.h:1816:0,
                 from /home/luoguiyang/env/anaconda3/envs/python27/lib/python2.7/site-packages/numpy/core/include/numpy/ndarrayobject.h:18,
                 from /home/luoguiyang/env/anaconda3/envs/python27/lib/python2.7/site-packages/numpy/core/include/numpy/arrayobject.h:4,
                 from nms/gpu_nms.cpp:346:
/home/luoguiyang/env/anaconda3/envs/python27/lib/python2.7/site-packages/numpy/core/include/numpy/npy_1_7_deprecated_api.h:15:2: 警告:#warning "Using deprecated NumPy API, disable it by " "#defining NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION" [-Wcpp]
 #warning "Using deprecated NumPy API, disable it by " \
  ^
g++ -pthread -shared -L/home/luoguiyang/env/anaconda3/envs/python27/lib -Wl,-rpath=/home/luoguiyang/env/anaconda3/envs/python27/lib,--no-as-needed build/temp.linux-x86_64-2.7/nms/nms_kernel.o build/temp.linux-x86_64-2.7/nms/gpu_nms.o -L/usr/local/cuda/lib64 -L/home/luoguiyang/env/anaconda3/envs/python27/lib -Wl,-R/usr/local/cuda/lib64 -lcudart -lpython2.7 -o /home/luoguiyang/projects/3dcnn/branch/tf-faster-rcnn/lib/nms/gpu_nms.so
rm -rf build

  

 3 下载代码和数据

   到这一步,按照README里面的提示一步一步走就应该没问题了(如果在本地测试的话)。

  1、clone github的仓库

git clone https://github.com/endernewton/tf-faster-rcnn.git

  2、更新GPU的架构配置,到setup.py中找到 -arch 这个参数,改成自己的GPU架构就行了

cd tf-faster-rcnn/lib
# Change the GPU architecture (-arch) if necessary
vim setup.py

  对应的配置如右图,github里面可能会对一些其他的显卡更新参数。 

  3、链接cython 模块,注意这也是在上一步那个lib 文件夹中进行的

make clean
make
cd ..

  4、安装 Python COCO API,这是为了使用COCO数据库

cd data
git clone https://github.com/pdollar/coco.git
cd coco/PythonAPI
make
cd ../../..

  

 4 运行Demo 和测试预训练模型

  1、下载预训练模型

# Resnet101 for voc pre-trained on 07+12 set
./data/scripts/fetch_faster_rcnn_models.sh

  README里面也说了,下载链接可能会失效,sh文件里面给了一个备用链接也是不管用的,但是readme里面还给了备份的Google Drive的地址,我把其中的要用的模型 voc_0712_80k-110k.tgz 这个文件手动下载了(百度云备份:https://pan.baidu.com/s/1kWkF3fT),下载之后放到 data文件夹中就行,(但是md5sum校验值对不上,估计是下载地址不一样的问题,也暂时忽略吧),运行以下命令解压:

tar xvf voc_0712_80k-110k.tgz

  2、建立预训练模型的软连接

NET=res101
TRAIN_IMDB=voc_2007_trainval+voc_2012_trainval
mkdir -p output/${NET}/${TRAIN_IMDB}
cd output/${NET}/${TRAIN_IMDB}
ln -s ../../../data/voc_2007_trainval+voc_2012_trainval ./default
cd ../../..

  3、运行以下代码就能测试demo了,主义是在tf-faster-rcnn 这个根文件夹中运行

# at repository root
GPU_ID=0
CUDA_VISIBLE_DEVICES=${GPU_ID} ./tools/demo.py

  这里还有一个问题,demo里面一个文件 import matlibplot.pyplot ,这时候如果是用终端连接的服务器的话,可能会出现DISPLAY 变量未设置这个bug,echo $DISPLAY 命令这时候肯定是什么不显示的。错误如下:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/000456.jpg
Detection took 1.316s for 300 object proposals
Traceback (most recent call last):
  File "./tools/demo.py", line 153, in <module>
    demo(sess, net, im_name)
  File "./tools/demo.py", line 100, in demo
    vis_detections(im, cls, dets, thresh=CONF_THRESH)
  File "./tools/demo.py", line 50, in vis_detections
    fig, ax = plt.subplots(figsize=(12, 12))
  File "/home/luoguiyang/env/anaconda3/envs/python27/lib/python2.7/site-packages/matplotlib/pyplot.py", line 1177, in subplots
    fig = figure(**fig_kw)
  File "/home/luoguiyang/env/anaconda3/envs/python27/lib/python2.7/site-packages/matplotlib/pyplot.py", line 527, in figure
    **kwargs)
  File "/home/luoguiyang/env/anaconda3/envs/python27/lib/python2.7/site-packages/matplotlib/backends/backend_qt4agg.py", line 46, in new_figure_manager
    return new_figure_manager_given_figure(num, thisFig)
  File "/home/luoguiyang/env/anaconda3/envs/python27/lib/python2.7/site-packages/matplotlib/backends/backend_qt4agg.py", line 53, in new_figure_manager_given_figure
    canvas = FigureCanvasQTAgg(figure)
  File "/home/luoguiyang/env/anaconda3/envs/python27/lib/python2.7/site-packages/matplotlib/backends/backend_qt4agg.py", line 76, in __init__
    FigureCanvasQT.__init__(self, figure)
  File "/home/luoguiyang/env/anaconda3/envs/python27/lib/python2.7/site-packages/matplotlib/backends/backend_qt4.py", line 68, in __init__
    _create_qApp()
  File "/home/luoguiyang/env/anaconda3/envs/python27/lib/python2.7/site-packages/matplotlib/backends/backend_qt5.py", line 138, in _create_qApp
    raise RuntimeError(\'Invalid DISPLAY variable\')
RuntimeError: Invalid DISPLAY variable

  这是因为matplotlib 输出的图像没有输出出来,有两种方法:

  解决方法(1)设置X11转发,具体方法Google一下,因为我的服务器没有配置Xauth,我也没有root权限,所以对我不适用了

  解决方法(2)改代码,不要让图像show了,而是把图像保存起来。错误里面可以看出引入matplotlib 的是 ./tools/demo.py 这个文件,教程:http://rootlu.com/blog/2017/10/08/MatplotlibInLinux.html/

    更改了两处

    

    

   改完之后,图片就保存在 tf-faster-rcnn 这里了,下载下来是这样的(没仔细改代码,只保存了一幅)

 

  基础的demo就可以运行了。后面调试的部分研究明白了再补上。

 

版权声明:本文为toone原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/toone/p/8433581.html