Kafka提交offset机制
在kafka的消费者中,有一个非常关键的机制,那就是offset机制。它使得Kafka在消费的过程中即使挂了或者引发再均衡问题重新分配Partation,当下次重新恢复消费时仍然可以知道从哪里开始消费。它好比看一本书中的书签标记,每次通过书签标记(offset)就能快速找到该从哪里开始看(消费)。
Kafka对于offset的处理有两种提交方式:(1) 自动提交(默认的提交方式) (2) 手动提交(可以灵活地控制offset)
(1) 自动提交偏移量:
Kafka中偏移量的自动提交是由参数enable_auto_commit和auto_commit_interval_ms控制的,当enable_auto_commit=True时,Kafka在消费的过程中会以频率为auto_commit_interval_ms向Kafka自带的topic(__consumer_offsets)进行偏移量提交,具体提交到哪个Partation是以算法:partation=hash(group_id)%50来计算的。
如:group_id=test_group_1,则partation=hash(“test_group_1”)%50=28
自动提交偏移量示例:
1 import pickle
2 import uuid
3 from kafka import KafkaConsumer
4
5 consumer = KafkaConsumer(
6 bootstrap_servers=[\'192.168.33.11:9092\'],
7 group_id="test_group_1",
8 client_id="{}".format(str(uuid.uuid4())),
9 max_poll_records=500,
10 enable_auto_commit=True, # 默认为True 表示自动提交偏移量
11 auto_commit_interval_ms=100, # 控制自动提交偏移量的频率 单位ms 默认是5000ms
12 key_deserializer=lambda k: pickle.loads(k),
13 value_deserializer=lambda v: pickle.loads(v)
14 )
15
16 # 订阅消费round_topic这个主题
17 consumer.subscribe(topics=(\'round_topic\',))
18
19 try:
20 while True:
21 consumer_records_dict = consumer.poll(timeout_ms=1000)
22
23 # consumer.assignment()可以获取每个分区的offset
24 for partition in consumer.assignment():
25 print(\'主题:{} 分区:{},需要从下面的offset开始消费:{}\'.format(
26 str(partition.topic),
27 str(partition.partition),
28 consumer.position(partition)
29 ))
30
31 # 处理逻辑.
32 for k, record_list in consumer_records_dict.items():
33 print(k)
34 for record in record_list:
35 print("topic = {},partition = {},offset = {},key = {},value = {}".format(
36 record.topic, record.partition, record.offset, record.key, record.value)
37 )
38
39 finally:
40 # 调用close方法的时候会触发偏移量的自动提交 close默认autocommit=True
41 consumer.close()
返回结果:
在上述代码中,最后调用consumer.close()时候也会触发自动提交,因为它默认autocommit=True,源码如下:
1 def close(self, autocommit=True):
2 """Close the consumer, waiting indefinitely for any needed cleanup.
3
4 Keyword Arguments:
5 autocommit (bool): If auto-commit is configured for this consumer,
6 this optional flag causes the consumer to attempt to commit any
7 pending consumed offsets prior to close. Default: True
8 """
9 if self._closed:
10 return
11 log.debug("Closing the KafkaConsumer.")
12 self._closed = True
13 self._coordinator.close(autocommit=autocommit)
14 self._metrics.close()
15 self._client.close()
16 try:
17 self.config[\'key_deserializer\'].close()
18 except AttributeError:
19 pass
20 try:
21 self.config[\'value_deserializer\'].close()
22 except AttributeError:
23 pass
24 log.debug("The KafkaConsumer has closed.")
对于自动提交偏移量,如果auto_commit_interval_ms的值设置的过大,当消费者在自动提交偏移量之前异常退出,将导致kafka未提交偏移量,进而出现重复消费的问题,所以建议auto_commit_interval_ms的值越小越好。
(2) 手动提交偏移量:
鉴于Kafka自动提交offset的不灵活性和不精确性(只能是按指定频率的提交),Kafka提供了手动提交offset策略。手动提交能对偏移量更加灵活精准地控制,以保证消息不被重复消费以及消息不被丢失。
对于手动提交offset主要有3种方式:1.同步提交 2.异步提交 3.异步+同步 组合的方式提交
1.同步手动提交偏移量
同步模式下提交失败的时候一直尝试提交,直到遇到无法重试的情况下才会结束,同时同步方式下消费者线程在拉取消息会被阻塞,在broker对提交的请求做出响应之前,会一直阻塞直到偏移量提交操作成功或者在提交过程中发生异常,限制了消息的吞吐量。
1 """
2 同步的方式10W条消息 4.58s
3 """
4
5 import pickle
6 import uuid
7 import time
8 from kafka import KafkaConsumer
9
10 consumer = KafkaConsumer(
11 bootstrap_servers=[\'192.168.33.11:9092\'],
12 group_id="test_group_1",
13 client_id="{}".format(str(uuid.uuid4())),
14 enable_auto_commit=False, # 设置为手动提交偏移量.
15 key_deserializer=lambda k: pickle.loads(k),
16 value_deserializer=lambda v: pickle.loads(v)
17 )
18
19 # 订阅消费round_topic这个主题
20 consumer.subscribe(topics=(\'round_topic\',))
21
22 try:
23 start_time = time.time()
24 while True:
25 consumer_records_dict = consumer.poll(timeout_ms=100) # 在轮询中等待的毫秒数
26 print("获取下一轮")
27
28 record_num = 0
29 for key, record_list in consumer_records_dict.items():
30 for record in record_list:
31 record_num += 1
32 print("---->当前批次获取到的消息个数是:{}<----".format(record_num))
33 record_num = 0
34
35 for k, record_list in consumer_records_dict.items():
36 for record in record_list:
37 print("topic = {},partition = {},offset = {},key = {},value = {}".format(
38 record.topic, record.partition, record.offset, record.key, record.value)
39 )
40
41 try:
42 # 轮询一个batch 手动提交一次
43 consumer.commit() # 提交当前批次最新的偏移量. 会阻塞 执行完后才会下一轮poll
44 end_time = time.time()
45 time_counts = end_time - start_time
46 print(time_counts)
47 except Exception as e:
48 print(\'commit failed\', str(e))
49
50 finally:
51 consumer.close() # 手动提交中close对偏移量提交没有影响
从上述可以看出,每轮循一个批次,手动提交一次,只有当前批次的消息提交完成时才会触发poll来获取下一轮的消息,经测试10W条消息耗时4.58s
2.异步手动提交偏移量+回调函数
异步手动提交offset时,消费者线程不会阻塞,提交失败的时候也不会进行重试,并且可以配合回调函数在broker做出响应的时候记录错误信息。
1 """
2 异步的方式手动提交偏移量(异步+回调函数的模式) 10W条消息 3.09s
3 """
4
5 import pickle
6 import uuid
7 import time
8 from kafka import KafkaConsumer
9
10 consumer = KafkaConsumer(
11 bootstrap_servers=[\'192.168.33.11:9092\'],
12 group_id="test_group_1",
13 client_id="{}".format(str(uuid.uuid4())),
14 enable_auto_commit=False, # 设置为手动提交偏移量.
15 key_deserializer=lambda k: pickle.loads(k),
16 value_deserializer=lambda v: pickle.loads(v)
17 )
18
19 # 订阅消费round_topic这个主题
20 consumer.subscribe(topics=(\'round_topic\',))
21
22
23 def _on_send_response(*args, **kwargs):
24 """
25 提交偏移量涉及回调函数
26 :param args: args[0] --> {TopicPartition:OffsetAndMetadata} args[1] --> Exception
27 :param kwargs:
28 :return:
29 """
30 if isinstance(args[1], Exception):
31 print(\'偏移量提交异常. {}\'.format(args[1]))
32 else:
33 print(\'偏移量提交成功\')
34
35
36 try:
37 start_time = time.time()
38 while True:
39 consumer_records_dict = consumer.poll(timeout_ms=10)
40
41 record_num = 0
42 for key, record_list in consumer_records_dict.items():
43 for record in record_list:
44 record_num += 1
45 print("当前批次获取到的消息个数是:{}".format(record_num))
46
47 for record_list in consumer_records_dict.values():
48 for record in record_list:
49 print("topic = {},partition = {},offset = {},key = {},value = {}".format(
50 record.topic, record.partition, record.offset, record.key, record.value))
51
52 # 避免频繁提交
53 if record_num != 0:
54 try:
55 consumer.commit_async(callback=_on_send_response)
56 except Exception as e:
57 print(\'commit failed\', str(e))
58
59 record_num = 0
60
61 finally:
62 consumer.close()
对于args参数:args[0]是一个dict,key是TopicPartition,value是OffsetAndMetadata,表示该主题下的partition对应的offset;args[1]在提交成功是True,提交失败时是一个Exception类。
对于异步提交,由于不会进行失败重试,当消费者异常关闭或者触发了再均衡前,如果偏移量还未提交就会造成偏移量丢失。
3.异步+同步 组合的方式提交偏移量
针对异步提交偏移量丢失的问题,通过对消费者进行异步批次提交并且在关闭时同步提交的方式,这样即使上一次的异步提交失败,通过同步提交还能够进行补救,同步会一直重试,直到提交成功。
1 """
2 同步和异步组合的方式提交偏移量
3 """
4
5 import pickle
6 import uuid
7 import time
8 from kafka import KafkaConsumer
9
10 consumer = KafkaConsumer(
11 bootstrap_servers=[\'192.168.33.11:9092\'],
12 group_id="test_group_1",
13 client_id="{}".format(str(uuid.uuid4())),
14 enable_auto_commit=False, # 设置为手动提交偏移量.
15 key_deserializer=lambda k: pickle.loads(k),
16 value_deserializer=lambda v: pickle.loads(v)
17 )
18
19 # 订阅消费round_topic这个主题
20 consumer.subscribe(topics=(\'round_topic\',))
21
22
23 def _on_send_response(*args, **kwargs):
24 """
25 提交偏移量涉及的回调函数
26 :param args:
27 :param kwargs:
28 :return:
29 """
30 if isinstance(args[1], Exception):
31 print(\'偏移量提交异常. {}\'.format(args[1]))
32 else:
33 print(\'偏移量提交成功\')
34
35
36 try:
37 start_time = time.time()
38 while True:
39 consumer_records_dict = consumer.poll(timeout_ms=100)
40
41 record_num = 0
42 for key, record_list in consumer_records_dict.items():
43 for record in record_list:
44 record_num += 1
45 print("---->当前批次获取到的消息个数是:<----".format(record_num))
46 record_num = 0
47
48 for k, record_list in consumer_records_dict.items():
49 print(k)
50 for record in record_list:
51 print("topic = {},partition = {},offset = {},key = {},value = {}".format(
52 record.topic, record.partition, record.offset, record.key, record.value)
53 )
54
55 try:
56 # 轮询一个batch 手动提交一次
57 consumer.commit_async(callback=_on_send_response)
58 end_time = time.time()
59 time_counts = end_time - start_time
60 print(time_counts)
61 except Exception as e:
62 print(\'commit failed\', str(e))
63
64 except Exception as e:
65 print(str(e))
66 finally:
67 try:
68 # 同步提交偏移量,在消费者异常退出的时候再次提交偏移量,确保偏移量的提交.
69 consumer.commit()
70 print("同步补救提交成功")
71 except Exception as e:
72 consumer.close()
通过finally在最后不管是否异常都会触发consumer.commit()来同步补救一次,确保偏移量不会丢失