引言

当从一个连续的区间内,比如[a, b],随机选择随机数的时候,给出的随机数的数值就服从连续均匀分布。其概率函数,也可以比较容易理解,就是分段函数,区间外的部分概率是0,区间内的部分概率是均匀的值,即区间长度的倒数。

连续均匀分布是指从a到b的连续区间内随机选择随机数的概率分布,其密度函数定义如下:

连续均匀分布的密度函数

比如,当 a = 1, b = 3时,连续均匀分布的概率函数f(x)的图像是:

unif 函数图像

R实践

  • R中提供了dunif函数, dunif gives the density,也即dunif函数计算,取出某个值的概率,如下:

dunif(x, min = 0, max = 1, log = FALSE)

# 从下可以看出,概率值在指定的区间内,是均匀的。在指定区间之外,概率值就是0.
> dunif(x = 0.5, min = 0, max = 1)
[1] 1
> dunif(x = 0.2, min = 0, max = 1)
[1] 1
> dunif(x = 0, min = 0, max = 3)
[1] 0.333
> dunif(x = -1, min = 0, max = 3)
[1] 0
> dunif(x = 4, min = 0, max = 3)
[1] 0

# 从下可以看出,均匀概率值的大小即为 1/(b-a)
> dunif(x = 0.2, min = 0, max = 2)
[1] 0.5
> dunif(x = 0.2, min = 0, max = 3)
[1] 0.333

所以可以利用dunif函数绘制上图的概率函数曲线,如下:

> a <- 1
> b <- 3
> x <- seq(0, 5, 0.01)
> y <- dunif(x  = x, min = a, max = b)
> plot(x, y, main = "Density of uniform distribution",xlab = "x",ylab = "Density",col = "red",pch = 19, type = \'l\')
  • R 中提供了punif 函数,punif gives the distribution function ,如下:

punif(q, min = 0, max = 1, lower.tail = TRUE, log.p = FALSE)

> punif(q = 0.5, min = 0, max = 1, lower.tail = TRUE, log.p = FALSE)
[1] 0.5
> punif(q = 0.5, min = 0, max = 2, lower.tail = TRUE, log.p = FALSE)
[1] 0.25
> punif(q = 0.5, min = 0, max = 3, lower.tail = TRUE, log.p = FALSE)
[1] 0.167
> punif(q = 0.2, min = 0, max = 1, lower.tail = TRUE, log.p = FALSE)
[1] 0.2
> punif(q = 0.1, min = 0, max = 1, lower.tail = TRUE, log.p = FALSE)
[1] 0.1

  • R 中提供了runif 函数,是生成随机数的函数。如下:

runif(n, min = 0, max = 1)

> runif(n = 3, min = 0, max = 1)
[1] 0.240 0.812 0.876
> runif(n = 3, min = 0, max = 10)
[1] 9.30 6.60 6.89

参考

版权声明:本文为songbiao原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/songbiao/p/12750154.html