Python爬虫爬取上海黄金交易所历史交易数据
为什么
因为想做上海黄金的量化交易,又信不过网上那些忽悠的神乎其神的App。于是自己动手,丰衣足食。
如何做
首先要获取权威的交易数据,上海黄金交易所官网就有历年的交易数据。所以打算用熟悉的Python写个爬虫自动获取。
1. 工具准备
Python3.6 + requests + lxml + Json
2. 网站解析
首先找到上海黄金交易所每日行情页列表(首页 > 数据资讯 > 历史行情数据 > 每日行情),分析该列表每页显示10天
的数据列表,点开后才是每天每个交易合约的交易数据。并且每一页的URL采用参数方式进行定位,如:“sjzx/mrhqsj?p=2 ”
表示第二页。所以只需要一个简单循环就可以找到需要的页面。
其次要找到具体数据页面列表的Xpath,可以使用浏览器Chrome自带的开发者模式,找到需要的数据,直接点右键 Copy > Copy Xpath。
3. 上代码
# -*- coding: UTF-8 -*-
# 本模块从上海黄金交易所官网下载历史交易数据
# https://www.sge.com.cn/sjzx/mrhqsj
import os
import time
from Lib.Web import get_Html, get_list, get_List_xpath, add_host
from Lib.os import save_list, save_list_A, save_list_B, makdir, BASE_PATH
headers = {
\'Referer\': \'https://www.sge.com.cn/sjzx/mrhqsj\',
\'User-Agent\': \'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36\',
}
def get_table(title, url, headers):
table_xpath = \'//div[@class="content"]/table/tbody/tr/td[1]/text()\'
html = get_Html(url, headers)
doc = get_list(html, table_xpath)
tab = []
had = []
n = len(doc)
for r in range(1, n+1):
table_xpath = \'//div[@class="content"]/table/tbody/tr[%d]/td/text()\' % r
d = get_list(html, table_xpath)
if r == 1:
for i in d:
had.append(str(i).replace(\'\t\', \'\').replace(
\'\n\', \'\').replace(\'\r\', \'\'))
else:
row = {}
row[\'交易日期\'] = title
try:
for i in range(len(d)):
row[had[i]] = str(d[i]).replace(
\'\t\', \'\').replace(\'\n\', \'\').replace(\'\r\', \'\')
except Exception as e:
pass
tab.append(row)
return tab
if __name__ == "__main__":
# 获得下载链接
for r in range(1, 201):
url = \'https://www.sge.com.cn/sjzx/mrhqsj?p=%d\' % r
filename = \'list_%d.txt\' % r
cache_dir = "goldlist"
html = get_Html(url, headers)
if not os.path.exists(os.path.join(BASE_PATH, cache_dir)):
makdir(os.path.join(BASE_PATH, cache_dir))
filename = os.path.join(BASE_PATH, cache_dir, filename)
if os.path.exists(filename):
print("跳过:%s" % filename)
continue
a = \'/html/body/div[6]/div/div[2]/div[2]/div[2]/ul/li/a/span[2]/text()\'
b = \'/html/body/div[6]/div/div[2]/div[2]/div[2]/ul/li/a/@href\'
lst = get_List_xpath(html, a, b)
for item in lst:
lst[item] = add_host(url, lst[item])
save_list_A(filename, lst)
print(\'获取历史行情第%d页\' % r)
time.sleep(3)
# 下载行情数据
for r in range(1, 201):
url = \'https://www.sge.com.cn/sjzx/mrhqsj?p=%d\' % r
filename = \'list_%d.txt\' % r
cache_dir = "goldlist"
filename = os.path.join(BASE_PATH, cache_dir, filename)
if os.path.exists(filename):
with open(filename, \'r\', encoding=\'utf-8\') as f:
line = f.readline()
item, url = line.split(\'\t\')
filename = os.path.join(BASE_PATH, cache_dir, "%s.txt" % item)
if os.path.exists(filename):
print("跳过:%s" % filename)
continue
doc = get_table(item, str(url).replace(\'\n\', \'\'), headers)
save_list_B(filename, doc)
print("保存:%s" % filename)
time.sleep(3)
其中使用到我自己为了方便建立的库函数
def get_host(url):
""" 返回域名,如:https://www.baidu.com """
ul = urlparse(url)
return ul.scheme + \'://\' + ul.hostname
def add_host(url, path):
return get_host(url) + path
def get_Html(url, headers, cookies=None, params=None):
""" 返回网页内容 """
if cookies:
r = requests.get(url=url, headers=headers, cookies=cookies)
else:
r = requests.get(url=url, headers=headers)
r.encoding = "utf-8"
return etree.HTML(r.text)
def get_list(html, xpath):
""" 返回指定位置的列表 """
return html.xpath(xpath)
def save_list_B(filename, list):
with open(filename, \'w\', encoding=\'utf-8\') as f:
f.writelines(json.dumps(list,ensure_ascii=False))