@

Introduction

NULL

弧微分

  设函数f(x)在区间(a,b)内具有连续导数,图形如图2.1中\(\widehat{AB}\)所示.
在这里插入图片描述

图2.1

  现在存在一段弧s, \(s(x) = \widehat{AM}\).则曲线s从M到M\’点关于x的变化率为\(\frac{ds}{dx}\):

  \(\frac{ds}{dx}=\frac{\widehat{MM\’}}{\Delta x}=\frac{\widehat{MM\’}}{|MM\’|} * \frac{|MM\’|}{\Delta x}= \frac{\widehat{MM\’}}{|MM\’|} * \frac{\sqrt{(\Delta x)^2 + (\Delta y)^2}}{\Delta x}\)

  因为\(\lim_{\Delta x \to 0}\frac{\widehat{MM\’}}{|MM\’|} = 1\)

  所以\(\lim_{\Delta x \to 0}\frac{\widehat{MM\’}}{|MM\’|} * \frac{\sqrt{(\Delta x)^2 + (\Delta y)^2}}{\Delta x} = \frac{\sqrt{(\Delta x)^2 + (\Delta y)^2}}{\Delta x}=\sqrt{1+(\frac{\Delta y}{\Delta x})^2}\)

  总结得:\(\frac{ds}{dx}=\sqrt{1+(\frac{\Delta y}{\Delta x})^2}=\sqrt{1+(y\’)^2}\)

  最终得:\(ds=\sqrt{1+(\frac{\Delta y}{\Delta x})^2}dx = \sqrt{(dx)^2+(dy)^2}= \sqrt{1+(y\’)^2}dx\)

  使用参数方程表示时:
  \(\left\{\begin{matrix}\\x = X(t)\\y = Y(t)\\\end{matrix}\right.\)

  \(\frac{\mathrm{d}}{\mathrm{d}t}X(t) = X\'(t) = x\’ = \frac{dx}{dt}\)

  \(\frac{\mathrm{d}}{\mathrm{d}t}Y(t) = Y\'(t) = y\’ = \frac{dy}{dt}\)

  最终得:\(ds=\sqrt{(X\’)^2+(Y\’)^2}dt\)

弧长公式

  由弧微分公式可以推导出弧长的计算公式:
  1. 当使用一般形式 \(y = f(x), s\)表示方程走过的路径时,\(s\)是关于x的积分:

  \(\int_{a}^{u}ds = \int_{a}^{u}\sqrt{1+(y\’)^2}dx\)

  \(s(u) = \int_{a}^{u}\sqrt{1+(y\’)^2}dx\)

  2. 使用参数方程时,\(s\)是关于t的积分:

  \(s(u) = \int_{a}^{u}\sqrt{(X\’)^2+(Y\’)^2}dt\)

  还有使用向量函数的表现形式,这里先不表。

曲率与曲率半径

曲率

  如图3.1所示,在一段弧线上,从点M开始,取距离为\(\Delta s\), 切线转角为\(\Delta \alpha\)的位移到达\(M\’\),则定义弧段\(\Delta s\)上的平均曲率\(\overline{K} = |\frac{\Delta \alpha }{\Delta s}|\),定义在点M处的曲率为 \(K=\lim_{\Delta s \to 0}|\frac{\Delta \alpha }{\Delta s}| = |\frac{d\alpha }{ds}|\)
在这里插入图片描述

图3.1

  曲率公式推导:
  设曲线弧\(y =f(x)\)二阶可导,曲线在一点处的切线角为\(\alpha\),可知在一点处的斜率可表示为 \(y\’ = \frac{dy}{dx} = tan (\alpha)\),从而可得

  \(\alpha = arctan(y\’)\)

  \(\frac{d\alpha }{dx} = (arctan(y\’))\’y\’\’ = \frac{y\’\’}{1 + (y\’)^2}\)

  因为\(ds=\sqrt{1+(y\’)^2}dx\)

  所以\(d\alpha = \frac{y\’\’}{(1 + (y\’)^2)^{\frac{3}{2}}}ds\),\(K = |\frac{d\alpha }{ds}| = | \frac{y\’\’}{(1 + (y\’)^2)^{\frac{3}{2}}}|\)

  使用参数方程表示时:

  \(\left\{\begin{matrix}\\x = X(t)\\y = Y(t)\\\end{matrix}\right.\)

  \(K = |\frac{d\alpha }{ds}| = | \frac{X\’Y\’\’-X\’\’Y\’}{((X\’)^2 + (Y\’)^2)^{\frac{3}{2}}}|\)
  过程参照:https://blog.csdn.net/buaazyp/article/details/82622972

曲率半径

  曲率的倒数就是曲率半径。
在这里插入图片描述

图3.2

  如上图所示,\(\Delta s = R\Delta \alpha\)
  所以\(K = \lim_{\Delta s \to 0}|\frac{\Delta \alpha }{\Delta s}| = \frac{1}{R}\)
  最终得\(R = \frac {1}{K}\)
  由这一性质得,曲率越大,其对应的圆越小,曲率半径越小,相反的,曲率越小,其对应的圆越大,曲率半径越大。

References

  1. https://wenku.baidu.com/view/92af806c26d3240c844769eae009581b6bd9bdb5.html
  2. https://baike.baidu.com/item/曲率半径/2036643
  3. https://blog.csdn.net/buaazyp/article/details/82622972

版权声明:本文为tjm6621186原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/tjm6621186/p/11369168.html