1、MSE(均方误差)(Mean Square Error)

MSE是真实值与预测值的差值的平方然后求和平均。

 

 范围[0,+∞),当预测值与真实值完全相同时为0,误差越大,该值越大。

  1. import numpy as np
  2. from sklearn import metrics
  3. y_true = np.array([1.0, 5.0, 4.0, 3.0, 2.0, 5.0, -3.0])
  4. y_pred = np.array([1.0, 4.5, 3.5, 5.0, 8.0, 4.5, 1.0])
  5. print(metrics.mean_squared_error(y_true, y_pred)) # 8.107142857142858

2、

  1. import numpy as np
  2. from sklearn import metrics
  3. y_true = np.array([1.0, 5.0, 4.0, 3.0, 2.0, 5.0, -3.0])
  4. y_pred = np.array([1.0, 4.5, 3.5, 5.0, 8.0, 4.5, 1.0])
  5. print(np.sqrt(metrics.mean_squared_error(y_true, y_pred)))

3、MAE (平均绝对误差)(Mean Absolute Error)

  1. import numpy as np
  2. from sklearn import metrics
  3. y_true = np.array([1.0, 5.0, 4.0, 3.0, 2.0, 5.0, -3.0])
  4. y_pred = np.array([1.0, 4.5, 3.5, 5.0, 8.0, 4.5, 1.0])
  5. print(metrics.mean_absolute_error(y_true, y_pred))

版权声明:本文为xiondun原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/xiondun/p/13710710.html