【STM32H7教程】第87章 STM32H7的SDMMC总线基础知识和HAL库API
完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980
第87章 STM32H7的SDMMC总线基础知识和HAL库API
本章节为大家讲解SDMMC(Secure digital input/output MultiMediaCard interface)总线的基础知识和对应的HAL库API。
87.1 初学者重要提示
87.2 SDMMC总线基础知识
87.3 SDMMC总线的HAL库用法
87.4 SDMMC总线源文件stm32h7xx_hal_sd.c
87.5 总结
87.1 初学者重要提示
- 对于SDMMC控制SD卡或者eMMC,掌握本章的知识点就够用了,更深入的认识可以看STM32H7的参考手册。
- 注意,操作SD卡是采用的函数HAL_SD_XXXX,而操作eMMC是采用的函数HAL_MMC_XXXX,也就是说他们采用的函数前缀是不同的。
- SD卡官网: www.sdcard.org 。
- SDMMC驱动eMMC支持1线,4线和8线模式,其中8线模式的最高速度可达208MB/S,实际速度受IO最大速度限制。
- SDMMC驱动SD卡支持1线和4线模式。
- STM32H7的SDMMC也支持eMMC:
-
- 【普及贴】各个厂家eMMC读写速度,镁光,东芝,三星,ISSI和旺宏http://www.armbbs.cn/forum.php?mod=viewthread&tid=95954
-
- H7的8线SDIO DMA驱动eMMC的裸机性能,读43MB/S,写18.8MB/Shttp://www.armbbs.cn/forum.php?mod=viewthread&tid=95953
87.2 SDMMC总线基础知识
87.2.1 SDMMC总线的硬件框图
认识一个外设,最好的方式就是看它的框图,方便我们快速的了解SDMMC的基本功能,然后再看手册了解细节。
通过这个框图,我们可以得到如下信息:
- sdmmc_ker_ck输入
SDMMC内核时钟。
- sdmmc_hclk输入
AHB时钟。
- sdmmc_it输出
SDMMC全局中断。
- sdmmc_dataend_trg输出
MDMA的SDMMC数据接收触发信号。
- SDMMC_CMD
SD/SDIO/MMC卡双向/响应信号。
- SDMMC_D[7:0]
SD/SDIO/MMC卡双向数据线。
- SDMMC_CKIN
来自SD/SDIO/MMC卡的外部驱动器的时钟反馈(用于SDR12,SDR25,SDR50和DDR50)。
- SDMMC_CK
SD/SDIO/MMC卡的时钟。
- SDMMC_CDIR
SDMMC_CMD信号的SD/SDIO/MMC卡I/O方向指示。
- SDMMC_D123DIR
SDMMC_D[3:1]数据线的SD/SDIO/MMC卡I/O方向指示。
- SDMMC_D0DIR
SDMMC_D0数据线的SD/SDIO/MMC卡I/O方向指示。
STM32H7有两个SDMMC控制器,SDMMC1和SDMMC2,这两个控制器支持的功能是一样的。
87.2.2 SDMMC时钟
SDMMC控制器的时钟来源:
SDMMC1和SDMMC2时钟源是一样的:
87.2.3 SDMMC1和SDMMC2支持的RAM空间区别
注:大家应用时要特别注意这个问题。
使用STM32H7的SDIO1仅支持AXI SRAM,而SDIO2是AXI,SRAM1,SRAM2和SRAM3都支持的
87.2.4 SDMMC支持的速度
驱动SD卡支持的最大总线速度:
驱动eMMC支持的最大总线速度:
关于这两个数据表,注意以下几点:
- 驱动SD卡最大支持4bit,驱动eMMC最大支持8bit。
- 针对信号电压1.8V或者1.2V,STM32H7需要外接专门的PHY芯片才可以驱动。
- 最大IO翻转限制说的是SDR50,SDR104这种高速通信。平时用的DS,HS这种,无压力,刷满速不成问题。
87.2.5 SDMMC支持UHS-I模式
STM32H7的SDIO外接支持UHS-I 模式 (SDR12, SDR25, SDR50, SDR104和DDR50)需要1.8的电平转换器。STM32H7参考手册给了一个型号ST6G3244ME:
87.2.6 SDMMC自带的DMA控制器IDMA
STM32H7的SDMMC自带了专用的DMA控制器IDMA,支持突发,也支持双缓冲。为什么要自带DMA控制器? 主要原因是STM32H7的通用DMA1和DMA2已经无法满足SDMMC高速通信速度。在本教程的第62章专门为大家测试过。通过让SDMMC自带控制器,这个问题就迎刃而解。
87.3 SDMMC总线的HAL库用法
87.3.1 SDMMC总线结构体SD_TypeDef
SDMMC总线相关的寄存器是通过HAL库中的结构体SD_TypeDef定义,在stm32h743xx.h中可以找到这个类型定义:
#define SD_TypeDef SDMMC_TypeDef typedef struct { __IO uint32_t POWER; /*!< SDMMC power control register, Address offset: 0x00 */ __IO uint32_t CLKCR; /*!< SDMMC clock control register, Address offset: 0x04 */ __IO uint32_t ARG; /*!< SDMMC argument register, Address offset: 0x08 */ __IO uint32_t CMD; /*!< SDMMC command register, Address offset: 0x0C */ __I uint32_t RESPCMD; /*!< SDMMC command response register, Address offset: 0x10 */ __I uint32_t RESP1; /*!< SDMMC response 1 register, Address offset: 0x14 */ __I uint32_t RESP2; /*!< SDMMC response 2 register, Address offset: 0x18 */ __I uint32_t RESP3; /*!< SDMMC response 3 register, Address offset: 0x1C */ __I uint32_t RESP4; /*!< SDMMC response 4 register, Address offset: 0x20 */ __IO uint32_t DTIMER; /*!< SDMMC data timer register, Address offset: 0x24 */ __IO uint32_t DLEN; /*!< SDMMC data length register, Address offset: 0x28 */ __IO uint32_t DCTRL; /*!< SDMMC data control register, Address offset: 0x2C */ __I uint32_t DCOUNT; /*!< SDMMC data counter register, Address offset: 0x30 */ __I uint32_t STA; /*!< SDMMC status register, Address offset: 0x34 */ __IO uint32_t ICR; /*!< SDMMC interrupt clear register, Address offset: 0x38 */ __IO uint32_t MASK; /*!< SDMMC mask register, Address offset: 0x3C */ __IO uint32_t ACKTIME; /*!< SDMMC Acknowledgement timer register, Address offset: 0x40 */ uint32_t RESERVED0[3]; /*!< Reserved, 0x44 - 0x4C - 0x4C */ __IO uint32_t IDMACTRL; /*!< SDMMC DMA control register, Address offset: 0x50 */ __IO uint32_t IDMABSIZE; /*!< SDMMC DMA buffer size register, Address offset: 0x54 */ __IO uint32_t IDMABASE0; /*!< SDMMC DMA buffer 0 base address register, Address offset: 0x58 */ __IO uint32_t IDMABASE1; /*!< SDMMC DMA buffer 1 base address register, Address offset: 0x5C */ uint32_t RESERVED1[8]; /*!< Reserved, 0x60-0x7C */ __IO uint32_t FIFO; /*!< SDMMC data FIFO register, Address offset: 0x80 */ uint32_t RESERVED2[222]; /*!< Reserved, 0x84-0x3F8 */ __IO uint32_t IPVR; /*!< SDMMC data FIFO register, Address offset: 0x3FC */ } SDMMC_TypeDef;
这个结构体的成员名称和排列次序和CPU的寄存器是一 一对应的。
__IO表示volatile, 这是标准C语言中的一个修饰字,表示这个变量是非易失性的,编译器不要将其优化掉。core_m7.h 文件定义了这个宏:
#define __O volatile /*!< Defines \'write only\' permissions */ #define __IO volatile /*!< Defines \'read / write\' permissions */
下面我们看下SDMMC的定义,在stm32h743xx.h文件。
#define PERIPH_BASE (0x40000000UL) #define D1_AHB1PERIPH_BASE (PERIPH_BASE + 0x12000000UL) #define D2_AHB2PERIPH_BASE (PERIPH_BASE + 0x08020000UL) #define SDMMC1_BASE (D1_AHB1PERIPH_BASE + 0x7000UL) #define SDMMC2_BASE (D2_AHB2PERIPH_BASE + 0x2400UL) #define SDMMC1 ((SDMMC_TypeDef *) SDMMC1_BASE) #define SDMMC2 ((SDMMC_TypeDef *) SDMMC2_BASE) <----- 展开这个宏,(SDMMC_TypeDef *)0x48022400
我们访问SDMMC1的CMD寄存器可以采用这种形式:SDMMC1->CMD = 0。
87.3.2 SDMMC总线初始化结构体SD_InitTypeDef
下面是SDMMC总线的初始化结构体:
#define SD_InitTypeDef SDMMC_InitTypeDef typedef struct { uint32_t ClockEdge; uint32_t ClockPowerSave; uint32_t BusWide; uint32_t HardwareFlowControl; uint32_t ClockDiv; #if (USE_SD_TRANSCEIVER != 0U) uint32_t TranceiverPresent; #endif }SDMMC_InitTypeDef;
下面将结构体成员逐一做个说明:
- ClockEdge
用于设置SDMMC的数据或者命令变化的时钟沿。
#define SDMMC_CLOCK_EDGE_RISING ((uint32_t)0x00000000U) #define SDMMC_CLOCK_EDGE_FALLING SDMMC_CLKCR_NEGEDGE
- ClockPowerSave
用于设置空闲状态,是否输出时钟。
#define SDMMC_CLOCK_POWER_SAVE_DISABLE ((uint32_t)0x00000000U) #define SDMMC_CLOCK_POWER_SAVE_ENABLE SDMMC_CLKCR_PWRSAV
- BusWide
用于设置SDMMC总线位宽。
#define SDMMC_BUS_WIDE_1B ((uint32_t)0x00000000U) #define SDMMC_BUS_WIDE_4B SDMMC_CLKCR_WIDBUS_0 #define SDMMC_BUS_WIDE_8B SDMMC_CLKCR_WIDBUS_1
- HardwareFlowControl
用于设置时候使能硬件流控制。
#define SDMMC_HARDWARE_FLOW_CONTROL_DISABLE ((uint32_t)0x00000000U) #define SDMMC_HARDWARE_FLOW_CONTROL_ENABLE SDMMC_CLKCR_HWFC_EN
- ClockDiv
用于设置SDMMC时钟分频,参数范围0到1023。
- TranceiverPresent
用于设置是否带1.8V收发器。
#define SDMMC_TRANSCEIVER_UNKNOWN ((uint32_t)0x00000000U) #define SDMMC_TRANSCEIVER_NOT_PRESENT ((uint32_t)0x00000001U) #define SDMMC_TRANSCEIVER_PRESENT ((uint32_t)0x00000002U)
87.3.3 SDMMC接SD卡信息结构体HAL_SD_CardInfoTypeDef
下面是SDMMC总线的卡信息结构体:
typedef struct { uint32_t CardType; /*!< Specifies the card Type */ uint32_t CardVersion; /*!< Specifies the card version */ uint32_t Class; /*!< Specifies the class of the card class */ uint32_t RelCardAdd; /*!< Specifies the Relative Card Address */ uint32_t BlockNbr; /*!< Specifies the Card Capacity in blocks */ uint32_t BlockSize; /*!< Specifies one block size in bytes */ uint32_t LogBlockNbr; /*!< Specifies the Card logical Capacity in blocks */ uint32_t LogBlockSize; /*!< Specifies logical block size in bytes */ uint32_t CardSpeed; /*!< Specifies the card Speed */ }HAL_SD_CardInfoTypeDef;
下面将结构体成员逐一做个说明:
- CardType
卡类型。
/*!< SD Standard Capacity <2Go */ #define CARD_SDSC ((uint32_t)0x00000000U) /*!< SD High Capacity <32Go, SD Extended Capacity <2To */ #define CARD_SDHC_SDXC ((uint32_t)0x00000001U) #define CARD_SECURED ((uint32_t)0x00000003U)
- CardVersion
卡版本。
#define CARD_V1_X ((uint32_t)0x00000000U) #define CARD_V2_X ((uint32_t)0x00000001U)
- Class
卡类型。
- RelCardAdd
卡相对地址。
- BlockNbr
整个卡的块数。
- BlockSize
每个块的字节数。
- LogBlockNbr
整个卡的逻辑块数。
- LogBlockSize
逻辑块大小
#define SPI_FIRSTBIT_MSB (0x00000000UL) #define SPI_FIRSTBIT_LSB SPI_CFG2_LSBFRST
- CardSpeed
用于设置是否使能SPI总线的TI模式。
/*!< Normal Speed Card <12.5Mo/s , Spec Version 1.01 */ #define CARD_NORMAL_SPEED ((uint32_t)0x00000000U) /*!< High Speed Card <25Mo/s , Spec version 2.00 */ #define CARD_HIGH_SPEED ((uint32_t)0x00000100U) /*!< UHS-I SD Card <50Mo/s for SDR50, DDR5 Cards and <104Mo/s for SDR104, Spec version 3.01 */ #define CARD_ULTRA_HIGH_SPEED ((uint32_t)0x00000200U)
87.3.4 SDMMC总线句柄结构体SD_HandleTypeDef
下面是SDMMC句柄结构体:
#if defined (USE_HAL_SD_REGISTER_CALLBACKS) && (USE_HAL_SD_REGISTER_CALLBACKS == 1U) typedef struct __SD_HandleTypeDef #else typedef struct #endif /* USE_HAL_SD_REGISTER_CALLBACKS */ { SD_TypeDef *Instance; /*!< SD registers base address */ SD_InitTypeDef Init; /*!< SD required parameters */ HAL_LockTypeDef Lock; /*!< SD locking object */ uint8_t *pTxBuffPtr; /*!< Pointer to SD Tx transfer Buffer */ uint32_t TxXferSize; /*!< SD Tx Transfer size */ uint8_t *pRxBuffPtr; /*!< Pointer to SD Rx transfer Buffer */ uint32_t RxXferSize; /*!< SD Rx Transfer size */ __IO uint32_t Context; /*!< SD transfer context */ __IO HAL_SD_StateTypeDef State; /*!< SD card State */ __IO uint32_t ErrorCode; /*!< SD Card Error codes */ HAL_SD_CardInfoTypeDef SdCard; /*!< SD Card information */ uint32_t CSD[4]; /*!< SD card specific data table */ uint32_t CID[4]; /*!< SD card identification number table */ #if defined (USE_HAL_SD_REGISTER_CALLBACKS) && (USE_HAL_SD_REGISTER_CALLBACKS == 1U) void (* TxCpltCallback) (struct __SD_HandleTypeDef *hsd); void (* RxCpltCallback) (struct __SD_HandleTypeDef *hsd); void (* ErrorCallback) (struct __SD_HandleTypeDef *hsd); void (* AbortCpltCallback) (struct __SD_HandleTypeDef *hsd); void (* Read_DMADblBuf0CpltCallback) (struct __SD_HandleTypeDef *hsd); void (* Read_DMADblBuf1CpltCallback) (struct __SD_HandleTypeDef *hsd); void (* Write_DMADblBuf0CpltCallback) (struct __SD_HandleTypeDef *hsd); void (* Write_DMADblBuf1CpltCallback) (struct __SD_HandleTypeDef *hsd); #if (USE_SD_TRANSCEIVER != 0U) void (* DriveTransceiver_1_8V_Callback) (FlagStatus status); #endif /* USE_SD_TRANSCEIVER */ void (* MspInitCallback) (struct __SD_HandleTypeDef *hsd); void (* MspDeInitCallback) (struct __SD_HandleTypeDef *hsd); #endif /* USE_HAL_SD_REGISTER_CALLBACKS */ }SD_HandleTypeDef;
注意事项:
条件编译USE_HAL_SD_REGISTER_CALLBACKS用来设置使用自定义回调还是使用默认回调,此定义一般放在stm32h7xx_hal_conf.h文件里面设置:
#define USE_HAL_SD_REGISTER_CALLBACKS 1
通过函数HAL_SD_RegisterCallback注册回调,取消注册使用函数HAL_SD_UnRegisterCallback。
这里重点介绍下面几个参数,其它参数主要是HAL库内部使用和自定义回调函数。
- SD_TypeDef *Instance
这个参数是寄存器的例化,方便操作寄存器。
- SD_InitTypeDef Init
这个参数在本章节3.2小节已经进行了详细说明。
87.4 SDMMC总线源文件stm32h7xx_hal_sd.c
此文件涉及到的函数较多,这里把几个常用的函数做个说明:
- HAL_SD_Init
- HAL_SD_DeInit
- HAL_SD_ReadBlocks
- HAL_SD_WriteBlocks
- HAL_SD_ReadBlocks_DMA
- HAL_SD_WriteBlocks_DMA
- HAL_SD_Erase
87.4.1 函数HAL_SD_Init
函数原型:
HAL_StatusTypeDef HAL_SD_Init(SD_HandleTypeDef *hsd) { HAL_SD_CardStatusTypeDef CardStatus; uint32_t speedgrade, unitsize; uint32_t tickstart; /* 检查句柄是否有效 */ if(hsd == NULL) { return HAL_ERROR; } /* 检查参数 */ assert_param(IS_SDMMC_ALL_INSTANCE(hsd->Instance)); assert_param(IS_SDMMC_CLOCK_EDGE(hsd->Init.ClockEdge)); assert_param(IS_SDMMC_CLOCK_POWER_SAVE(hsd->Init.ClockPowerSave)); assert_param(IS_SDMMC_BUS_WIDE(hsd->Init.BusWide)); assert_param(IS_SDMMC_HARDWARE_FLOW_CONTROL(hsd->Init.HardwareFlowControl)); assert_param(IS_SDMMC_CLKDIV(hsd->Init.ClockDiv)); if(hsd->State == HAL_SD_STATE_RESET) { /* 开锁 */ hsd->Lock = HAL_UNLOCKED; #if (USE_SD_TRANSCEIVER != 0U) /* 兼容 */ if (hsd->Init.TranceiverPresent == SDMMC_TRANSCEIVER_UNKNOWN) { hsd->Init.TranceiverPresent = SDMMC_TRANSCEIVER_PRESENT; } #endif #if defined (USE_HAL_SD_REGISTER_CALLBACKS) && (USE_HAL_SD_REGISTER_CALLBACKS == 1U) /* 复位回调 */ hsd->TxCpltCallback = HAL_SD_TxCpltCallback; hsd->RxCpltCallback = HAL_SD_RxCpltCallback; hsd->ErrorCallback = HAL_SD_ErrorCallback; hsd->AbortCpltCallback = HAL_SD_AbortCallback; hsd->Read_DMADblBuf0CpltCallback = HAL_SDEx_Read_DMADoubleBuf0CpltCallback; hsd->Read_DMADblBuf1CpltCallback = HAL_SDEx_Read_DMADoubleBuf1CpltCallback; hsd->Write_DMADblBuf0CpltCallback = HAL_SDEx_Write_DMADoubleBuf0CpltCallback; hsd->Write_DMADblBuf1CpltCallback = HAL_SDEx_Write_DMADoubleBuf1CpltCallback; #if (USE_SD_TRANSCEIVER != 0U) if (hsd->Init.TranceiverPresent == SDMMC_TRANSCEIVER_PRESENT) { hsd->DriveTransceiver_1_8V_Callback = HAL_SD_DriveTransceiver_1_8V_Callback; } #endif if(hsd->MspInitCallback == NULL) { hsd->MspInitCallback = HAL_SD_MspInit; } /* 初始化底层 */ hsd->MspInitCallback(hsd); #else /* 初始化底层硬件 GPIO, CLOCK, CORTEX...etc */ HAL_SD_MspInit(hsd); #endif /* USE_HAL_SD_REGISTER_CALLBACKS */ } hsd->State = HAL_SD_STATE_BUSY; /* 初始化卡参数 */ if (HAL_SD_InitCard(hsd) != HAL_OK) { return HAL_ERROR; } if( HAL_SD_GetCardStatus(hsd, &CardStatus) != HAL_OK) { return HAL_ERROR; } /* 获取卡速度等信息 */ speedgrade = CardStatus.UhsSpeedGrade; unitsize = CardStatus.UhsAllocationUnitSize; if ((hsd->SdCard.CardType == CARD_SDHC_SDXC) && ((speedgrade != 0U) || (unitsize != 0U))) { hsd->SdCard.CardSpeed = CARD_ULTRA_HIGH_SPEED; } else { if (hsd->SdCard.CardType == CARD_SDHC_SDXC) { hsd->SdCard.CardSpeed = CARD_HIGH_SPEED; } else { hsd->SdCard.CardSpeed = CARD_NORMAL_SPEED; } } /* 配置总线位宽 */ if(HAL_SD_ConfigWideBusOperation(hsd, hsd->Init.BusWide) != HAL_OK) { return HAL_ERROR; } /* 验证卡初始化后是否就绪 */ tickstart = HAL_GetTick(); while((HAL_SD_GetCardState(hsd) != HAL_SD_CARD_TRANSFER)) { if((HAL_GetTick()-tickstart) >= SDMMC_DATATIMEOUT) { hsd->ErrorCode = HAL_SD_ERROR_TIMEOUT; hsd->State= HAL_SD_STATE_READY; return HAL_TIMEOUT; } } hsd->ErrorCode = HAL_SD_ERROR_NONE; hsd->Context = SD_CONTEXT_NONE; hsd->State = HAL_SD_STATE_READY; return HAL_OK; }
函数描述:
此函数用于初始化SD卡。
函数参数:
- 第1个参数是SD_HandleTypeDef类型结构体指针变量,用于配置要初始化的参数。
- 返回值,返回HAL_TIMEOUT表示超时,HAL_ERROR表示参数错误,HAL_OK表示发送成功,HAL_BUSY表示忙,正在使用中。
注意事项:
- 函数HAL_SD_MspInit用于初始化SD的底层时钟、引脚等功能。需要用户自己在此函数里面实现具体的功能。由于这个函数是弱定义的,允许用户在工程其它源文件里面重新实现此函数。当然,不限制一定要在此函数里面实现,也可以像早期的标准库那样,用户自己初始化即可,更灵活些。
- 如果形参hsd的结构体成员State没有做初始状态,这个地方就是个坑。特别是用户搞了一个局部变量SD_HandleTypeDef SdHandle。
对于局部变量来说,这个参数就是一个随机值,如果是全局变量还好,一般MDK和IAR都会将全部变量初始化为0,而恰好这个 HAL_SD_STATE_RESET = 0x00U。
解决办法有三
方法1:用户自己初始化SD和涉及到的GPIO等。
方法2:定义SD_HandleTypeDef SdHandle为全局变量。
方法3:下面的方法
if(HAL_SD_DeInit(&SdHandle) != HAL_OK) { Error_Handler(); } if(HAL_SD_Init(&SdHandle) != HAL_OK) { Error_Handler(); }
使用举例:
SD_HandleTypeDef uSdHandle; uSdHandle.Instance = SDMMC1; /* if CLKDIV = 0 then SDMMC Clock frequency = SDMMC Kernel Clock else SDMMC Clock frequency = SDMMC Kernel Clock / [2 * CLKDIV]. 200MHz / (2*2) = 50MHz */ uSdHandle.Init.ClockDiv = 2; uSdHandle.Init.ClockPowerSave = SDMMC_CLOCK_POWER_SAVE_DISABLE; uSdHandle.Init.ClockEdge = SDMMC_CLOCK_EDGE_RISING; uSdHandle.Init.HardwareFlowControl = SDMMC_HARDWARE_FLOW_CONTROL_DISABLE; uSdHandle.Init.BusWide = SDMMC_BUS_WIDE_4B; if(HAL_SD_Init(&uSdHandle) != HAL_OK) { sd_state = MSD_ERROR; }
87.4.2 函数HAL_SD_DeInit
函数原型:
HAL_StatusTypeDef HAL_SD_DeInit(SD_HandleTypeDef *hsd) { /* 检查SD卡句柄是否有效 */ if(hsd == NULL) { return HAL_ERROR; } /* 检查参数 */ assert_param(IS_SDMMC_ALL_INSTANCE(hsd->Instance)); hsd->State = HAL_SD_STATE_BUSY; #if (USE_SD_TRANSCEIVER != 0U) /* 关闭1.8V模式 */ if (hsd->Init.TranceiverPresent == SDMMC_TRANSCEIVER_PRESENT) { #if defined (USE_HAL_SD_REGISTER_CALLBACKS) && (USE_HAL_SD_REGISTER_CALLBACKS == 1U) if(hsd->DriveTransceiver_1_8V_Callback == NULL) { hsd->DriveTransceiver_1_8V_Callback = HAL_SD_DriveTransceiver_1_8V_Callback; } hsd->DriveTransceiver_1_8V_Callback(RESET); #else HAL_SD_DriveTransceiver_1_8V_Callback(RESET); #endif } #endif /* 关闭SD卡电源 */ SD_PowerOFF(hsd); #if defined (USE_HAL_SD_REGISTER_CALLBACKS) && (USE_HAL_SD_REGISTER_CALLBACKS == 1U) if(hsd->MspDeInitCallback == NULL) { hsd->MspDeInitCallback = HAL_SD_MspDeInit; } /* 复位底层硬件 */ hsd->MspDeInitCallback(hsd); #else /* 复位底层硬件 */ HAL_SD_MspDeInit(hsd); #endif hsd->ErrorCode = HAL_SD_ERROR_NONE; hsd->State = HAL_SD_STATE_RESET; return HAL_OK; }
函数描述:
用于复位SD总线初始化。
函数参数:
- 第1个参数是SD_HandleTypeDef类型结构体指针变量。
- 返回值,返回HAL_TIMEOUT表示超时,HAL_ERROR表示参数错误,HAL_OK表示发送成功,HAL_BUSY表示忙,正在使用中。
87.4.3 函数HAL_SD_ReadBlocks
函数原型:
HAL_StatusTypeDef HAL_SD_ReadBlocks(SD_HandleTypeDef *hsd, uint8_t *pData, uint32_t BlockAdd, uint32_t NumberOfBlocks, uint32_t Timeout) { SDMMC_DataInitTypeDef config; uint32_t errorstate; uint32_t tickstart = HAL_GetTick(); uint32_t count, data, dataremaining; uint32_t add = BlockAdd; uint8_t *tempbuff = pData; if(NULL == pData) { hsd->ErrorCode |= HAL_SD_ERROR_PARAM; return HAL_ERROR; } if(hsd->State == HAL_SD_STATE_READY) { hsd->ErrorCode = HAL_SD_ERROR_NONE; if((add + NumberOfBlocks) > (hsd->SdCard.LogBlockNbr)) { hsd->ErrorCode |= HAL_SD_ERROR_ADDR_OUT_OF_RANGE; return HAL_ERROR; } hsd->State = HAL_SD_STATE_BUSY; /* 初始化数据控制寄存器 */ hsd->Instance->DCTRL = 0U; if(hsd->SdCard.CardType != CARD_SDHC_SDXC) { add *= 512U; } /* 配置SD DPSM (Data Path State Machine) */ config.DataTimeOut = SDMMC_DATATIMEOUT; config.DataLength = NumberOfBlocks * BLOCKSIZE; config.DataBlockSize = SDMMC_DATABLOCK_SIZE_512B; config.TransferDir = SDMMC_TRANSFER_DIR_TO_SDMMC; config.TransferMode = SDMMC_TRANSFER_MODE_BLOCK; config.DPSM = SDMMC_DPSM_DISABLE; (void)SDMMC_ConfigData(hsd->Instance, &config); __SDMMC_CMDTRANS_ENABLE( hsd->Instance); /* 查询方式块读取 */ if(NumberOfBlocks > 1U) { hsd->Context = SD_CONTEXT_READ_MULTIPLE_BLOCK; /* 多块读取命令 */ errorstate = SDMMC_CmdReadMultiBlock(hsd->Instance, add); } else { hsd->Context = SD_CONTEXT_READ_SINGLE_BLOCK; /* 单块读取命令 */ errorstate = SDMMC_CmdReadSingleBlock(hsd->Instance, add); } if(errorstate != HAL_SD_ERROR_NONE) { /* 清除所有静态标志 */ __HAL_SD_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); hsd->ErrorCode |= errorstate; hsd->State = HAL_SD_STATE_READY; hsd->Context = SD_CONTEXT_NONE; return HAL_ERROR; } /* 查询SDMMC标志 */ dataremaining = config.DataLength; while(!__HAL_SD_GET_FLAG(hsd, SDMMC_FLAG_RXOVERR | SDMMC_FLAG_DCRCFAIL | SDMMC_FLAG_DTIMEOUT | SDMMC_FLAG_DATAEND)) { if(__HAL_SD_GET_FLAG(hsd, SDMMC_FLAG_RXFIFOHF) && (dataremaining >= 32U)) { /* 从SDMMC Rx FIFO读取数据 */ for(count = 0U; count < 8U; count++) { data = SDMMC_ReadFIFO(hsd->Instance); *tempbuff = (uint8_t)(data & 0xFFU); tempbuff++; *tempbuff = (uint8_t)((data >> 8U) & 0xFFU); tempbuff++; *tempbuff = (uint8_t)((data >> 16U) & 0xFFU); tempbuff++; *tempbuff = (uint8_t)((data >> 24U) & 0xFFU); tempbuff++; } dataremaining -= 32U; } if(((HAL_GetTick()-tickstart) >= Timeout) || (Timeout == 0U)) { /* 清除所有静态标志 */ __HAL_SD_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); hsd->ErrorCode |= HAL_SD_ERROR_TIMEOUT; hsd->State= HAL_SD_STATE_READY; hsd->Context = SD_CONTEXT_NONE; return HAL_TIMEOUT; } } __SDMMC_CMDTRANS_DISABLE( hsd->Instance); /* 多块读取发送停止传输命令 */ if(__HAL_SD_GET_FLAG(hsd, SDMMC_FLAG_DATAEND) && (NumberOfBlocks > 1U)) { if(hsd->SdCard.CardType != CARD_SECURED) { /* 发送停止传输命令 */ errorstate = SDMMC_CmdStopTransfer(hsd->Instance); if(errorstate != HAL_SD_ERROR_NONE) { /* 清除所有静态标志 */ __HAL_SD_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); hsd->ErrorCode |= errorstate; hsd->State = HAL_SD_STATE_READY; hsd->Context = SD_CONTEXT_NONE; return HAL_ERROR; } } } /* 获取错误状态 */ if(__HAL_SD_GET_FLAG(hsd, SDMMC_FLAG_DTIMEOUT)) { /* 清除所有静态标志 */ __HAL_SD_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); hsd->ErrorCode |= HAL_SD_ERROR_DATA_TIMEOUT; hsd->State = HAL_SD_STATE_READY; hsd->Context = SD_CONTEXT_NONE; return HAL_ERROR; } else if(__HAL_SD_GET_FLAG(hsd, SDMMC_FLAG_DCRCFAIL)) { /* 清除所有静态标志 */ __HAL_SD_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); hsd->ErrorCode |= HAL_SD_ERROR_DATA_CRC_FAIL; hsd->State = HAL_SD_STATE_READY; hsd->Context = SD_CONTEXT_NONE; return HAL_ERROR; } else if(__HAL_SD_GET_FLAG(hsd, SDMMC_FLAG_RXOVERR)) { /* 清除所有静态标志 */ __HAL_SD_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); hsd->ErrorCode |= HAL_SD_ERROR_RX_OVERRUN; hsd->State = HAL_SD_STATE_READY; hsd->Context = SD_CONTEXT_NONE; return HAL_ERROR; } else { /* 什么都不做 */ } /* 清除所有静态标志 */ __HAL_SD_CLEAR_FLAG(hsd, SDMMC_STATIC_DATA_FLAGS); hsd->State = HAL_SD_STATE_READY; return HAL_OK; } else { hsd->ErrorCode |= HAL_SD_ERROR_BUSY; return HAL_ERROR; } }
函数描述:
此函数主要用于SD卡数据读取。
函数参数:
- 第1个参数是SD_HandleTypeDef类型结构体指针变量。
- 第2个参数是接收数据的缓冲地址。
- 第3个参数是要读取的扇区地址,即从第几个扇区开始读取(512字节为一个扇区)。
- 第4个参数是读取的扇区数。
- 第5个参数是传输过程的溢出时间,单位ms。
- 返回值,返回HAL_TIMEOUT表示超时,HAL_ERROR表示参数错误,HAL_OK表示发送成功,HAL_BUSY表示忙,正在使用中。
使用举例:
/** * @brief Reads block(s) from a specified address in an SD card, in polling mode. * @param pData: Pointer to the buffer that will contain the data to transmit * @param ReadAddr: Address from where data is to be read * @param NumOfBlocks: Number of SD blocks to read * @param Timeout: Timeout for read operation * @retval SD status */ uint8_t BSP_SD_ReadBlocks(uint32_t *pData, uint32_t ReadAddr, uint32_t NumOfBlocks, uint32_t Timeout) { if( HAL_SD_ReadBlocks(&uSdHandle, (uint8_t *)pData, ReadAddr, NumOfBlocks, Timeout) == HAL_OK) { return MSD_OK; } else { return MSD_ERROR; } }
87.4.4 函数HAL_SD_WriteBlocks
函数原型:
HAL_StatusTypeDef HAL_SD_WriteBlocks(SD_HandleTypeDef *hsd, uint8_t *pData, uint32_t BlockAdd, uint32_t NumberOfBlocks, uint32_t Timeout) { SDMMC_DataInitTypeDef config; uint32_t errorstate; uint32_t tickstart = HAL_GetTick(); uint32_t count, data, dataremaining; uint32_t add = BlockAdd; uint8_t *tempbuff = pData; if(NULL == pData) { hsd->ErrorCode |= HAL_SD_ERROR_PARAM; return HAL_ERROR; } if(hsd->State == HAL_SD_STATE_READY) { hsd->ErrorCode = HAL_SD_ERROR_NONE; if((add + NumberOfBlocks) > (hsd->SdCard.LogBlockNbr)) { hsd->ErrorCode |= HAL_SD_ERROR_ADDR_OUT_OF_RANGE; return HAL_ERROR; } hsd->State = HAL_SD_STATE_BUSY; /* 初始化数据控制寄存器 */ hsd->Instance->DCTRL = 0U; if(hsd->SdCard.CardType != CARD_SDHC_SDXC) { add *= 512U; } /* 配置SD DPSM */ config.DataTimeOut = SDMMC_DATATIMEOUT; config.DataLength = NumberOfBlocks * BLOCKSIZE; config.DataBlockSize = SDMMC_DATABLOCK_SIZE_512B; config.TransferDir = SDMMC_TRANSFER_DIR_TO_CARD; config.TransferMode = SDMMC_TRANSFER_MODE_BLOCK; config.DPSM = SDMMC_DPSM_DISABLE; (void)SDMMC_ConfigData(hsd->Instance, &config); __SDMMC_CMDTRANS_ENABLE( hsd->Instance); /* 查询方式块写操作 */ if(NumberOfBlocks > 1U) { hsd->Context = SD_CONTEXT_WRITE_MULTIPLE_BLOCK; /* 写多块命令 */ errorstate = SDMMC_CmdWriteMultiBlock(hsd->Instance, add); } else { hsd->Context = SD_CONTEXT_WRITE_SINGLE_BLOCK; /* 写单块命令 */ errorstate = SDMMC_CmdWriteSingleBlock(hsd->Instance, add); } if(errorstate != HAL_SD_ERROR_NONE) { /* 清除所有静态命令 */ __HAL_SD_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); hsd->ErrorCode |= errorstate; hsd->State = HAL_SD_STATE_READY; hsd->Context = SD_CONTEXT_NONE; return HAL_ERROR; } /* 查询方式块写操作 */ dataremaining = config.DataLength; while(!__HAL_SD_GET_FLAG(hsd, SDMMC_FLAG_TXUNDERR | SDMMC_FLAG_DCRCFAIL | SDMMC_FLAG_DTIMEOUT | SDMMC_FLAG_DATAEND)) { if(__HAL_SD_GET_FLAG(hsd, SDMMC_FLAG_TXFIFOHE) && (dataremaining >= 32U)) { /* 写数据到SDMMC Tx FIFO */ for(count = 0U; count < 8U; count++) { data = (uint32_t)(*tempbuff); tempbuff++; data |= ((uint32_t)(*tempbuff) << 8U); tempbuff++; data |= ((uint32_t)(*tempbuff) << 16U); tempbuff++; data |= ((uint32_t)(*tempbuff) << 24U); tempbuff++; (void)SDMMC_WriteFIFO(hsd->Instance, &data); } dataremaining -= 32U; } if(((HAL_GetTick()-tickstart) >= Timeout) || (Timeout == 0U)) { /* 清除所有静态标志 */ __HAL_SD_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); hsd->ErrorCode |= errorstate; hsd->State = HAL_SD_STATE_READY; hsd->Context = SD_CONTEXT_NONE; return HAL_TIMEOUT; } } __SDMMC_CMDTRANS_DISABLE( hsd->Instance); /* 多块写操作,发送停止传输命令 */ if(__HAL_SD_GET_FLAG(hsd, SDMMC_FLAG_DATAEND) && (NumberOfBlocks > 1U)) { if(hsd->SdCard.CardType != CARD_SECURED) { /* 发送停止传输命令 */ errorstate = SDMMC_CmdStopTransfer(hsd->Instance); if(errorstate != HAL_SD_ERROR_NONE) { /* 清除所有静态传输标志 */ __HAL_SD_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); hsd->ErrorCode |= errorstate; hsd->State = HAL_SD_STATE_READY; hsd->Context = SD_CONTEXT_NONE; return HAL_ERROR; } } } /* Get error state */ if(__HAL_SD_GET_FLAG(hsd, SDMMC_FLAG_DTIMEOUT)) { /* 清除所有静态传输标志 */ __HAL_SD_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); hsd->ErrorCode |= HAL_SD_ERROR_DATA_TIMEOUT; hsd->State = HAL_SD_STATE_READY; hsd->Context = SD_CONTEXT_NONE; return HAL_ERROR; } else if(__HAL_SD_GET_FLAG(hsd, SDMMC_FLAG_DCRCFAIL)) { /* 清除所有静态传输标志 */ __HAL_SD_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); hsd->ErrorCode |= HAL_SD_ERROR_DATA_CRC_FAIL; hsd->State = HAL_SD_STATE_READY; hsd->Context = SD_CONTEXT_NONE; return HAL_ERROR; } else if(__HAL_SD_GET_FLAG(hsd, SDMMC_FLAG_TXUNDERR)) { /* 清除所有静态传输标志 */ __HAL_SD_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); hsd->ErrorCode |= HAL_SD_ERROR_TX_UNDERRUN; hsd->State = HAL_SD_STATE_READY; hsd->Context = SD_CONTEXT_NONE; return HAL_ERROR; } else { /* 什么都不做 */ } /* 清除所有静态传输标志 */ __HAL_SD_CLEAR_FLAG(hsd, SDMMC_STATIC_DATA_FLAGS); hsd->State = HAL_SD_STATE_READY; return HAL_OK; } else { hsd->ErrorCode |= HAL_SD_ERROR_BUSY; return HAL_ERROR; } }
函数描述:
此函数主要用于向SD卡写入数据。
函数参数:
- 第1个参数是SD_HandleTypeDef类型结构体指针变量。
- 第2个参数是要写入到SD卡的数据缓冲地址。
- 第3个参数是要写入的扇区地址,即从第几个扇区开始写入(512字节为一个扇区)。
- 第4个参数是读取的扇区数。
- 第5个参数是传输过程的溢出时间,单位ms。
- 返回值,返回HAL_TIMEOUT表示超时,HAL_ERROR表示参数错误,HAL_OK表示发送成功,HAL_BUSY表示忙,正在使用中。
使用举例:
/** * @brief Writes block(s) to a specified address in an SD card, in polling mode. * @param pData: Pointer to the buffer that will contain the data to transmit * @param WriteAddr: Address from where data is to be written * @param NumOfBlocks: Number of SD blocks to write * @param Timeout: Timeout for write operation * @retval SD status */ uint8_t BSP_SD_WriteBlocks(uint32_t *pData, uint32_t WriteAddr, uint32_t NumOfBlocks, uint32_t Timeout) { if( HAL_SD_WriteBlocks(&uSdHandle, (uint8_t *)pData, WriteAddr, NumOfBlocks, Timeout) == HAL_OK) { return MSD_OK; } else { return MSD_ERROR; } }
87.4.5 函数HAL_SD_ReadBlocks_DMA
函数原型:
HAL_StatusTypeDef HAL_SD_ReadBlocks_DMA(SD_HandleTypeDef *hsd, uint8_t *pData, uint32_t BlockAdd, uint32_t NumberOfBlocks) { SDMMC_DataInitTypeDef config; uint32_t errorstate; uint32_t add = BlockAdd; if(NULL == pData) { hsd->ErrorCode |= HAL_SD_ERROR_PARAM; return HAL_ERROR; } if(hsd->State == HAL_SD_STATE_READY) { hsd->ErrorCode = HAL_SD_ERROR_NONE; if((add + NumberOfBlocks) > (hsd->SdCard.LogBlockNbr)) { hsd->ErrorCode |= HAL_SD_ERROR_ADDR_OUT_OF_RANGE; return HAL_ERROR; } hsd->State = HAL_SD_STATE_BUSY; /* 初始化数据控制寄存器 */ hsd->Instance->DCTRL = 0U; hsd->pRxBuffPtr = pData; hsd->RxXferSize = BLOCKSIZE * NumberOfBlocks; if(hsd->SdCard.CardType != CARD_SDHC_SDXC) { add *= 512U; } /* 配置SD DPSM (Data Path State Machine) */ config.DataTimeOut = SDMMC_DATATIMEOUT; config.DataLength = BLOCKSIZE * NumberOfBlocks; config.DataBlockSize = SDMMC_DATABLOCK_SIZE_512B; config.TransferDir = SDMMC_TRANSFER_DIR_TO_SDMMC; config.TransferMode = SDMMC_TRANSFER_MODE_BLOCK; config.DPSM = SDMMC_DPSM_DISABLE; (void)SDMMC_ConfigData(hsd->Instance, &config); __SDMMC_CMDTRANS_ENABLE( hsd->Instance); hsd->Instance->IDMABASE0 = (uint32_t) pData ; hsd->Instance->IDMACTRL = SDMMC_ENABLE_IDMA_SINGLE_BUFF; /* DMA方式读取多个块 */ if(NumberOfBlocks > 1U) { hsd->Context = (SD_CONTEXT_READ_MULTIPLE_BLOCK | SD_CONTEXT_DMA); /* DMA方式读取多块命令 */ errorstate = SDMMC_CmdReadMultiBlock(hsd->Instance, add); } else { hsd->Context = (SD_CONTEXT_READ_SINGLE_BLOCK | SD_CONTEXT_DMA); /* 读取单块命令 */ errorstate = SDMMC_CmdReadSingleBlock(hsd->Instance, add); } if(errorstate != HAL_SD_ERROR_NONE) { /* 清除所有静态标志 */ __HAL_SD_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); hsd->ErrorCode |= errorstate; hsd->State = HAL_SD_STATE_READY; hsd->Context = SD_CONTEXT_NONE; return HAL_ERROR; } /* 使能传输中断 */ __HAL_SD_ENABLE_IT(hsd, (SDMMC_IT_DCRCFAIL | SDMMC_IT_DTIMEOUT | SDMMC_IT_RXOVERR | SDMMC_IT_DATAEND)); return HAL_OK; } else { return HAL_BUSY; } }
函数描述:
此函数主要用于SD卡数据读取,DMA方式。
函数参数:
- 第1个参数是SD_HandleTypeDef类型结构体指针变量。
- 第2个参数是接收数据的缓冲地址。
- 第3个参数是要读取的扇区地址,即从第几个扇区开始读取(512字节为一个扇区)。
- 第4个参数是读取的扇区数。
- 返回值,返回HAL_TIMEOUT表示超时,HAL_ERROR表示参数错误,HAL_OK表示发送成功,HAL_BUSY表示忙,正在使用中。
使用举例:
/** * @brief Reads block(s) from a specified address in an SD card, in DMA mode. * @param pData: Pointer to the buffer that will contain the data to transmit * @param ReadAddr: Address from where data is to be read * @param NumOfBlocks: Number of SD blocks to read * @retval SD status */ uint8_t BSP_SD_ReadBlocks_DMA(uint32_t *pData, uint32_t ReadAddr, uint32_t NumOfBlocks) { if( HAL_SD_ReadBlocks_DMA(&uSdHandle, (uint8_t *)pData, ReadAddr, NumOfBlocks) == HAL_OK) { return MSD_OK; } else { return MSD_ERROR; } }
87.4.6 函数HAL_SD_WriteBlocks_DMA
函数原型:
HAL_StatusTypeDef HAL_SD_WriteBlocks_DMA(SD_HandleTypeDef *hsd, uint8_t *pData, uint32_t BlockAdd, uint32_t NumberOfBlocks) { SDMMC_DataInitTypeDef config; uint32_t errorstate; uint32_t add = BlockAdd; if(NULL == pData) { hsd->ErrorCode |= HAL_SD_ERROR_PARAM; return HAL_ERROR; } if(hsd->State == HAL_SD_STATE_READY) { hsd->ErrorCode = HAL_SD_ERROR_NONE; if((add + NumberOfBlocks) > (hsd->SdCard.LogBlockNbr)) { hsd->ErrorCode |= HAL_SD_ERROR_ADDR_OUT_OF_RANGE; return HAL_ERROR; } hsd->State = HAL_SD_STATE_BUSY; /* 初始化数据控制寄存器 */ hsd->Instance->DCTRL = 0U; hsd->pTxBuffPtr = pData; hsd->TxXferSize = BLOCKSIZE * NumberOfBlocks; if(hsd->SdCard.CardType != CARD_SDHC_SDXC) { add *= 512U; } /* 配置SD DPSM (Data Path State Machine) */ config.DataTimeOut = SDMMC_DATATIMEOUT; config.DataLength = BLOCKSIZE * NumberOfBlocks; config.DataBlockSize = SDMMC_DATABLOCK_SIZE_512B; config.TransferDir = SDMMC_TRANSFER_DIR_TO_CARD; config.TransferMode = SDMMC_TRANSFER_MODE_BLOCK; config.DPSM = SDMMC_DPSM_DISABLE; (void)SDMMC_ConfigData(hsd->Instance, &config); __SDMMC_CMDTRANS_ENABLE( hsd->Instance); hsd->Instance->IDMABASE0 = (uint32_t) pData ; hsd->Instance->IDMACTRL = SDMMC_ENABLE_IDMA_SINGLE_BUFF; /* 查询模式写块 */ if(NumberOfBlocks > 1U) { hsd->Context = (SD_CONTEXT_WRITE_MULTIPLE_BLOCK | SD_CONTEXT_DMA); /* 多块写命令 */ errorstate = SDMMC_CmdWriteMultiBlock(hsd->Instance, add); } else { hsd->Context = (SD_CONTEXT_WRITE_SINGLE_BLOCK | SD_CONTEXT_DMA); /* 单块写命令 */ errorstate = SDMMC_CmdWriteSingleBlock(hsd->Instance, add); } if(errorstate != HAL_SD_ERROR_NONE) { /* 清除静态标志 */ __HAL_SD_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); hsd->ErrorCode |= errorstate; hsd->State = HAL_SD_STATE_READY; hsd->Context = SD_CONTEXT_NONE; return HAL_ERROR; } /* 使能传输中断 Enable */ __HAL_SD_ENABLE_IT(hsd, (SDMMC_IT_DCRCFAIL | SDMMC_IT_DTIMEOUT | SDMMC_IT_TXUNDERR | SDMMC_IT_DATAEND)); return HAL_OK; } else { return HAL_BUSY; } }
函数描述:
此函数主要用于向SD卡写入数据,DMA方式。
函数参数:
- 第1个参数是SD_HandleTypeDef类型结构体指针变量。
- 第2个参数是要写入到SD卡的数据缓冲地址。
- 第3个参数是要写入的扇区地址,即从第几个扇区开始写入(512字节为一个扇区)。
- 第4个参数是读取的扇区数。
- 返回值,返回HAL_TIMEOUT表示超时,HAL_ERROR表示参数错误,HAL_OK表示发送成功,HAL_BUSY表示忙,正在使用中。
使用举例:
/** * @brief Writes block(s) to a specified address in an SD card, in DMA mode. * @param pData: Pointer to the buffer that will contain the data to transmit * @param WriteAddr: Address from where data is to be written * @param NumOfBlocks: Number of SD blocks to write * @retval SD status */ uint8_t BSP_SD_WriteBlocks_DMA(uint32_t *pData, uint32_t WriteAddr, uint32_t NumOfBlocks) { if( HAL_SD_WriteBlocks_DMA(&uSdHandle, (uint8_t *)pData, WriteAddr, NumOfBlocks) == HAL_OK) { return MSD_OK; } else { return MSD_ERROR; } }
87.4.7 函数HAL_SD_Erase
函数原型:
HAL_StatusTypeDef HAL_SD_Erase(SD_HandleTypeDef *hsd, uint32_t BlockStartAdd, uint32_t BlockEndAdd) { uint32_t errorstate; uint32_t start_add = BlockStartAdd; uint32_t end_add = BlockEndAdd; if(hsd->State == HAL_SD_STATE_READY) { hsd->ErrorCode = HAL_SD_ERROR_NONE; if(end_add < start_add) { hsd->ErrorCode |= HAL_SD_ERROR_PARAM; return HAL_ERROR; } if(end_add > (hsd->SdCard.LogBlockNbr)) { hsd->ErrorCode |= HAL_SD_ERROR_ADDR_OUT_OF_RANGE; return HAL_ERROR; } hsd->State = HAL_SD_STATE_BUSY; /* 检测是否支持擦除命令 */ if(((hsd->SdCard.Class) & SDMMC_CCCC_ERASE) == 0U) { /* 清除所有静态标志 */ __HAL_SD_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); hsd->ErrorCode |= HAL_SD_ERROR_REQUEST_NOT_APPLICABLE; hsd->State = HAL_SD_STATE_READY; return HAL_ERROR; } if((SDMMC_GetResponse(hsd->Instance, SDMMC_RESP1) & SDMMC_CARD_LOCKED) == SDMMC_CARD_LOCKED) { /* 清除所有静态标志 */ __HAL_SD_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); hsd->ErrorCode |= HAL_SD_ERROR_LOCK_UNLOCK_FAILED; hsd->State = HAL_SD_STATE_READY; return HAL_ERROR; } /* 对于高容量卡,获取起始块和结束块 */ if(hsd->SdCard.CardType != CARD_SDHC_SDXC) { start_add *= 512U; end_add *= 512U; } /* 根据sd-card spec 1.0 ERASE_GROUP_START (CMD32) 和 erase_group_end(CMD33) */ if(hsd->SdCard.CardType != CARD_SECURED) { /* 发送CMD32 SD_ERASE_GRP_START命令带地址参数 */ errorstate = SDMMC_CmdSDEraseStartAdd(hsd->Instance, start_add); if(errorstate != HAL_SD_ERROR_NONE) { /* 清除所有静态标志 */ __HAL_SD_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); hsd->ErrorCode |= errorstate; hsd->State = HAL_SD_STATE_READY; return HAL_ERROR; } /* 发送CMD33 SD_ERASE_GRP_END命令,带地址参数 */ errorstate = SDMMC_CmdSDEraseEndAdd(hsd->Instance, end_add); if(errorstate != HAL_SD_ERROR_NONE) { /* 清除所有静态标志 */ __HAL_SD_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); hsd->ErrorCode |= errorstate; hsd->State = HAL_SD_STATE_READY; return HAL_ERROR; } } /* 发送CMD38 ERASE命令 */ errorstate = SDMMC_CmdErase(hsd->Instance, 0UL); if(errorstate != HAL_SD_ERROR_NONE) { /* 清除所有静态标志 */ __HAL_SD_CLEAR_FLAG(hsd, SDMMC_STATIC_FLAGS); hsd->ErrorCode |= errorstate; hsd->State = HAL_SD_STATE_READY; return HAL_ERROR; } hsd->State = HAL_SD_STATE_READY; return HAL_OK; } else { return HAL_BUSY; } }
函数描述:
此函数主要用于SD卡擦除。
函数参数:
- 第1个参数是SD_HandleTypeDef类型结构体指针变量。
- 第2个参数是擦除的起始扇区地址,地址单位是第几个扇区(512字节为一个扇区)。
- 第3个参数是擦除的结束扇区地址,地址单位是第几个扇区(512字节为一个扇区)。
- 返回值,返回HAL_TIMEOUT表示超时,HAL_ERROR表示参数错误,HAL_OK表示发送成功,HAL_BUSY表示忙,正在使用中。
使用举例:
/** * @brief Erases the specified memory area of the given SD card. * @param StartAddr: Start byte address * @param EndAddr: End byte address * @retval SD status */ uint8_t BSP_SD_Erase(uint32_t StartAddr, uint32_t EndAddr) { if( HAL_SD_Erase(&uSdHandle, StartAddr, EndAddr) == HAL_OK) { return MSD_OK; } else { return MSD_ERROR; } }
87.5 总结
本章节就为大家讲解这么多,更多SDMMC知识可以看STM32H7的参考手册。