1.主题式网络爬虫名称:爬取前程无忧官网  搜索大数据职位信息
2.主题式网络爬虫爬取的内容与数据特征分析:爬取前程无忧官网  搜索大数据职位信息
3.主题式网络爬虫设计方案概述(包括实现思路与技术难点)

思路:通过按f12查找页面的源代码,找到所需代码处在的标签,通过爬虫处理将所需代码保存到excel文件内,再进行清洗,分析以及数据可视化的处理。

二、主题页面的结构特征分析
1.主题页面的结构与特征分析

 

 

 

 

2.Htmls页面解析

 

 三、网络爬虫程序设计

1.数据爬取与采集

import urllib.request
import xlwt
import re
import urllib.parse
import time
header={
    \'Host\':\'search.51job.com\',
    \'Upgrade-Insecure-Requests\':\'1\',
    \'User-Agent\':\'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.108 Safari/537.36\'
}
def getfront(page,item):       #page是页数,item是输入的字符串,见后文
     result = urllib.parse.quote(item)                    #先把字符串转成十六进制编码
     ur1 = result+\',2,\'+ str(page)+\'.html\'
     ur2 = \'https://search.51job.com/list/000000,000000,0000,00,9,99,\'
     res = ur2+ur1                                                            #拼接网址
     a = urllib.request.urlopen(res)
     html = a.read().decode(\'gbk\')          # 读取源代码并转为unicode
     return html
def getInformation(html):
    reg = re.compile(r\'class="t1 ">.*? <a target="_blank" title="(.*?)" href="(.*?)".*? <span class="t2"><a target="_blank" title="(.*?)" href="(.*?)".*?<span class="t3">(.*?)</span>.*?<span class="t4">(.*?)</span>.*?<span class="t5">(.*?)</span>.*?\',re.S)#匹配换行符
    items=re.findall(reg,html)
    return items
#新建表格空间
excel1 = xlwt.Workbook()
# 设置单元格格式
sheet1 = excel1.add_sheet(\'Job\', cell_overwrite_ok=True)
sheet1.write(0, 0, \'序号\')
sheet1.write(0, 1, \'职位\')
sheet1.write(0, 2, \'公司名称\')
sheet1.write(0, 3, \'公司地点\')
sheet1.write(0, 4, \'公司性质\')
sheet1.write(0, 5, \'薪资\')
sheet1.write(0, 6, \'学历要求\')
sheet1.write(0, 7, \'工作经验\')
sheet1.write(0, 8, \'公司规模\')
sheet1.write(0, 9, \'公司类型\')
sheet1.write(0, 10,\'公司福利\')
sheet1.write(0, 11,\'发布时间\')
number = 1
item = input()
for j in range(1,10000):   #页数自己随便改
    try:
        print("正在爬取第"+str(j)+"页数据...")
        html = getfront(j,item)      #调用获取网页原码
        for i in getInformation(html):
            try:
                url1 = i[1]          #职位网址
                res1 = urllib.request.urlopen(url1).read().decode(\'gbk\')
                company = re.findall(re.compile(r\'<div class="com_tag">.*?<p class="at" title="(.*?)"><span class="i_flag">.*?<p class="at" title="(.*?)">.*?<p class="at" title="(.*?)">.*?\',re.S),res1)
                job_need = re.findall(re.compile(r\'<p class="msg ltype".*?>.*?&nbsp;&nbsp;<span>|</span>&nbsp;&nbsp;(.*?)&nbsp;&nbsp;<span>|</span>&nbsp;&nbsp;(.*?)&nbsp;&nbsp;<span>|</span>&nbsp;&nbsp;.*?</p>\',re.S),res1)
                welfare = re.findall(re.compile(r\'<span class="sp4">(.*?)</span>\',re.S),res1)
                print(i[0],i[2],i[4],i[5],company[0][0],job_need[2][0],job_need[1][0],company[0][1],company[0][2],welfare,i[6])
                sheet1.write(number,0,number)
                sheet1.write(number,1,i[0])
                sheet1.write(number,2,i[2])
                sheet1.write(number,3,i[4])
                sheet1.write(number,4,company[0][0])
                sheet1.write(number,5,i[5])
                sheet1.write(number,6,job_need[1][0])
                sheet1.write(number,7,job_need[2][0])
                sheet1.write(number,8,company[0][1])
                sheet1.write(number,9,company[0][2])
                sheet1.write(number,10,("  ".join(str(i) for i in welfare)))
                sheet1.write(number,11,i[6])
                number+=1
                excel1.save("51job.xls")
                time.sleep(0.3) #休息间隔,避免爬取海量数据时被误判为攻击,IP遭到封禁
            except:
                pass
    except:
        pass

 

 

 

 

2.对数据进行清洗和处理

#coding:utf-8
import pandas as pd
import re
#除此之外还要安装xlrd包

data = pd.read_excel(r\'51job.xls\',sheet_name=\'Job\')
result = pd.DataFrame(data)
a = result.dropna(axis=0,how=\'any\')
pd.set_option(\'display.max_rows\',None)     #输出全部行,不省略
b = u\'数据\'
number = 1
li = a[\'职位\']
for i in range(0,len(li)):
    try:
        if b in li[i]:
            #print(number,li[i])
            number+=1
        else:
            a = a.drop(i,axis=0)
    except:
        pass
b2= u\'\'
li2 = a[\'学历要求\']
for i in range(0,len(li2)):
    try:
        if b2 in li2[i]:
            #print(number,li2[i])
            number+=1
            a = a.drop(i,axis=0)
    except:
        pass
b3 =u\'万/年\'
b4 =u\'千/月\'
li3 = a[\'薪资\']
#注释部分的print都是为了调试用的
for i in range(0,len(li3)):
    try:
        if b3 in li3[i]:
            x = re.findall(r\'\d*\.?\d+\',li3[i])
            #print(x)
            min_ = format(float(x[0])/12,\'.2f\')              #转换成浮点型并保留两位小数
            max_ = format(float(x[1])/12,\'.2f\')
            li3[i][1] = min_+\'-\'+max_+u\'万/月\'
        if b4 in li3[i]:
            x = re.findall(r\'\d*\.?\d+\',li3[i])
            #print(x)
            #input()
            min_ = format(float(x[0])/10,\'.2f\')
            max_ = format(float(x[1])/10,\'.2f\')
            li3[i][1] = str(min_+\'-\'+max_+\'万/月\')
        print(i,li3[i])

    except:
        pass
a.to_excel(\'51job2.xls\', sheet_name=\'Job\', index=False)

 

 

 

3.数据分析与可视化(例如:数据柱形图、直方图、散点图、盒图、分布图)

# -*- coding: utf-8 -*-
import pandas as pd
import re
from pyecharts import Funnel,Pie,Geo
import matplotlib.pyplot as plt
file = pd.read_excel(r\'51job2.xls\',sheet_name=\'Job\')
f = pd.DataFrame(file)
pd.set_option(\'display.max_rows\',None)
add = f[\'公司地点\']
sly = f[\'薪资\']
edu = f[\'学历要求\']
exp = f[\'工作经验\']
address =[]
salary = []
education = []
experience = []
for i in range(0,len(f)):
    try:
        a = add[i].split(\'-\')
        address.append(a[0])
        #print(address[i])
        s = re.findall(r\'\d*\.?\d+\',sly[i])
        s1= float(s[0])
        s2 =float(s[1])
        salary.append([s1,s2])
        #print(salary[i])
        education.append(edu[i])
        #print(education[i])
        experience.append(exp[i])
        #print(experience[i])
    except:
       pass
min_s=[]                            #定义存放最低薪资的列表
max_s=[]                            #定义存放最高薪资的列表
for i in range(0,len(experience)):
    min_s.append(salary[i][0])
    max_s.append(salary[i][0])

my_df = pd.DataFrame({\'experience\':experience, \'min_salay\' : min_s, \'max_salay\' : max_s})                #关联工作经验与薪资
data1 = my_df.groupby(\'experience\').mean()[\'min_salay\'].plot(kind=\'line\')
plt.show()
my_df2 = pd.DataFrame({\'education\':education, \'min_salay\' : min_s, \'max_salay\' : max_s})                #关联学历与薪资
data2 = my_df2.groupby(\'education\').mean()[\'min_salay\'].plot(kind=\'line\')
plt.show()
def get_edu(list):
    education2 = {}
    for i in set(list):
        education2[i] = list.count(i)
    return education2
dir1 = get_edu(education)
# print(dir1)

attr= dir1.keys()
value = dir1.values()
pie = Pie("学历要求")
pie.add("", attr, value, center=[50, 50], is_random=False, radius=[30, 75], rosetype=\'radius\',
        is_legend_show=False, is_label_show=True,legend_orient=\'vertical\')
pie.render(\'学历要求玫瑰图.html\')
def get_address(list):
    address2 = {}
    for i in set(list):
        address2[i] = list.count(i)
    address2.pop(\'异地招聘\')
    # 有些地名可能不合法或者地图包里没有可以自行删除,之前以下名称都会报错,现在好像更新了
    #address2.pop(\'山东\')
    #address2.pop(\'怒江\')
    #address2.pop(\'池州\')
    return address2
dir2 = get_address(address)
#print(dir2)

geo = Geo("大数据人才需求分布图", title_color="#2E2E2E",
          title_text_size=24,title_top=20,title_pos="center", width=1300,height=600)
attr2 = dir2.keys()
value2 = dir2.values()
geo.add("",attr2, value2, type="effectScatter", is_random=True, visual_range=[0, 1000], maptype=\'china\',symbol_size=8, effect_scale=5, is_visualmap=True)
geo.render(\'大数据城市需求分布图.html\')
def get_experience(list):
    experience2 = {}
    for i in set(list):
         experience2[i] = list.count(i)
    return experience2
dir3 = get_experience(experience)
#print(dir3)

attr3= dir3.keys()
value3 = dir3.values()
funnel = Funnel("工作经验漏斗图",title_pos=\'center\')
funnel.add("", attr3, value3,is_label_show=True,label_pos="inside", label_text_color="#fff",legend_orient=\'vertical\',legend_pos=\'left\')
funnel.render(\'工作经验要求漏斗图.html\')

 

 

 

 

 

 åœ¨è¿™é‡Œæ’入图片描述

 

 

 

 

5.根据数据之间的关系,分析两个变量之间的相关系数,画出散点图,并建立变量之间的回归方程(一元或多元)(10分)。

X = df.score
Y = df.Numbers  
def func(params, x):
        a, b, c = params
        return a*x*x+b*x+c
def error(params,x,y):
     return func(params,x)-y    
def main(a,b,c):
    p0 = [0,0,0]
    Para=leastsq(error,p0,args=(X,Y))
    a,b,c=Para[0]    
    print("a=",a,"b=",b,"c=",c) 
    plt.scatter(X,Y,color="green",label=u"评分分布",linewidth=2)
    x=np.linspace(0,30,20)
    y=a*x*x+b*x+c
    plt.plot(x,y,color="red",label=u"回归方程直线",linewidth=2)     
    plt.title("大数据职位信息关系图")
    plt.legend()
    plt.grid()
    plt.show()
main()
#一元二次回归方程

 

7.将以上各部分的代码汇总,附上完整程序代码

# -*- coding:utf-8 -*-
import urllib.request
import xlwt
import re
import urllib.parse
import time
header={
    \'Host\':\'search.51job.com\',
    \'Upgrade-Insecure-Requests\':\'1\',
    \'User-Agent\':\'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.108 Safari/537.36\'
}
def getfront(page,item):       #page是页数,item是输入的字符串
     result = urllib.parse.quote(item)                    #先把字符串转成十六进制编码
     ur1 = result+\',2,\'+ str(page)+\'.html\'
     ur2 = \'https://search.51job.com/list/000000,000000,0000,00,9,99,\'
     res = ur2+ur1                                                            #拼接网址
     a = urllib.request.urlopen(res)
     html = a.read().decode(\'gbk\')          # 读取源代码并转为unicode
     return html
def getInformation(html):
    reg = re.compile(r\'class="t1 ">.*? <a target="_blank" title="(.*?)" href="(.*?)".*? <span class="t2"><a target="_blank" title="(.*?)" href="(.*?)".*?<span class="t3">(.*?)</span>.*?<span class="t4">(.*?)</span>.*?<span class="t5">(.*?)</span>.*?\',re.S)#匹配换行符
    items=re.findall(reg,html)
    return items
#新建表格空间
excel1 = xlwt.Workbook()
# 设置单元格格式
sheet1 = excel1.add_sheet(\'Job\', cell_overwrite_ok=True)
sheet1.write(0, 0, \'序号\')
sheet1.write(0, 1, \'职位\')
sheet1.write(0, 2, \'公司名称\')
sheet1.write(0, 3, \'公司地点\')
sheet1.write(0, 4, \'公司性质\')
sheet1.write(0, 5, \'薪资\')
sheet1.write(0, 6, \'学历要求\')
sheet1.write(0, 7, \'工作经验\')
sheet1.write(0, 8, \'公司规模\')
sheet1.write(0, 9, \'公司类型\')
sheet1.write(0, 10,\'公司福利\')
sheet1.write(0, 11,\'发布时间\')
number = 1
item = input()
for j in range(1,10000):   #页数自己随便改
    try:
        print("正在爬取第"+str(j)+"页数据...")
        html = getfront(j,item)      #调用获取网页原码
        for i in getInformation(html):
            try:
                url1 = i[1]          #职位网址
                res1 = urllib.request.urlopen(url1).read().decode(\'gbk\')
                company = re.findall(re.compile(r\'<div class="com_tag">.*?<p class="at" title="(.*?)"><span class="i_flag">.*?<p class="at" title="(.*?)">.*?<p class="at" title="(.*?)">.*?\',re.S),res1)
                job_need = re.findall(re.compile(r\'<p class="msg ltype".*?>.*?&nbsp;&nbsp;<span>|</span>&nbsp;&nbsp;(.*?)&nbsp;&nbsp;<span>|</span>&nbsp;&nbsp;(.*?)&nbsp;&nbsp;<span>|</span>&nbsp;&nbsp;.*?</p>\',re.S),res1)
                welfare = re.findall(re.compile(r\'<span class="sp4">(.*?)</span>\',re.S),res1)
                print(i[0],i[2],i[4],i[5],company[0][0],job_need[2][0],job_need[1][0],company[0][1],company[0][2],welfare,i[6])
                sheet1.write(number,0,number)
                sheet1.write(number,1,i[0])
                sheet1.write(number,2,i[2])
                sheet1.write(number,3,i[4])
                sheet1.write(number,4,company[0][0])
                sheet1.write(number,5,i[5])
                sheet1.write(number,6,job_need[2][0])
                sheet1.write(number,7,job_need[1][0])
                sheet1.write(number,8,company[0][1])
                sheet1.write(number,9,company[0][2])
                sheet1.write(number,10,("  ".join(str(i) for i in welfare)))
                sheet1.write(number,11,i[6])
                number+=1
                excel1.save("51job.xls")
                time.sleep(0.3) #休息间隔,避免爬取海量数据时被误判为攻击,IP遭到封禁
            except:
                pass
    except:
        pass
#coding:utf-8
import pandas as pd
import re

data = pd.read_excel(r\'51job.xls\',sheet_name=\'Job\')
result = pd.DataFrame(data)

a = result.dropna(axis=0,how=\'any\')
pd.set_option(\'display.max_rows\',None)     #输出全部行,不省略

b = u\'数据\'
number = 1
li = a[\'职位\']
for i in range(0,len(li)):
    try:
        if b in li[i]:
            #print(number,li[i])
            number+=1
        else:
            a = a.drop(i,axis=0)  #删除整行
    except:
        pass

b2 = \'\'
li2 = a[\'学历要求\']
for i in range(0,len(li2)):
    try:
        if b2 in li2[i]:
            # print(number,li2[i])
            number += 1
            a = a.drop(i, axis=0)
    except:
        pass

b3 =u\'万/年\'
b4 =u\'千/月\'
li3 = a[\'薪资\']
#注释部分的print都是为了调试用的
for i in range(0,len(li3)):
    try:
        if b3 in li3[i]:
            x = re.findall(r\'\d*\.?\d+\',li3[i])
            #print(x)
            min_ = format(float(x[0])/12,\'.2f\')              #转换成浮点型并保留两位小数
            max_ = format(float(x[1])/12,\'.2f\')
            li3[i][1] = min_+\'-\'+max_+u\'万/月\'
        if b4 in li3[i]:
            x = re.findall(r\'\d*\.?\d+\',li3[i])
            #print(x)
            #input()
            min_ = format(float(x[0])/10,\'.2f\')
            max_ = format(float(x[1])/10,\'.2f\')
            li3[i][1] = str(min_+\'-\'+max_+\'万/月\')
        print(i,li3[i])

    except:
        pass
a.to_excel(\'51job2.xls\', sheet_name=\'Job\', index=False)
#############################################################################################
import pandas as pd
import re
from pyecharts import Funnel,Pie,Geo
import matplotlib.pyplot as plt

file = pd.read_excel(r\'51job2.xls\',sheet_name=\'Job\')
f = pd.DataFrame(file)
pd.set_option(\'display.max_rows\',None)

add = f[\'公司地点\']
sly = f[\'薪资\']
edu = f[\'学历要求\']
exp = f[\'工作经验\']
address =[]
salary = []
education = []
experience = []
for i in range(0,len(f)):
    try:
        a = add[i].split(\'-\')
        address.append(a[0])
        #print(address[i])
        s = re.findall(r\'\d*\.?\d+\',sly[i])
        s1= float(s[0])
        s2 =float(s[1])
        salary.append([s1,s2])
        #print(salary[i])
        education.append(edu[i])
        #print(education[i])
        experience.append(exp[i])
        #print(experience[i])
    except:
       pass

min_s=[]                            #定义存放最低薪资的列表
max_s=[]                            #定义存放最高薪资的列表
for i in range(0,len(experience)):
    min_s.append(salary[i][0])
    max_s.append(salary[i][0])
#matplotlib模块如果显示不了中文字符串可以用以下代码。
plt.rcParams[\'font.sans-serif\'] = [\'KaiTi\'] # 指定默认字体
plt.rcParams[\'axes.unicode_minus\'] = False # 解决保存图像是负号\'-\'显示为方块的问题

my_df = pd.DataFrame({\'experience\':experience, \'min_salay\' : min_s, \'max_salay\' : max_s})                #关联工作经验与薪资
data1 = my_df.groupby(\'experience\').mean()[\'min_salay\'].plot(kind=\'line\')
plt.show()
my_df2 = pd.DataFrame({\'education\':education, \'min_salay\' : min_s, \'max_salay\' : max_s})                #关联学历与薪资
data2 = my_df2.groupby(\'education\').mean()[\'min_salay\'].plot(kind=\'line\')
plt.show()

def get_edu(list):
    education2 = {}
    for i in set(list):
        education2[i] = list.count(i)
    return education2
dir1 = get_edu(education)
# print(dir1)

attr= dir1.keys()
value = dir1.values()
pie = Pie("学历要求")
pie.add("", attr, value, center=[50, 50], is_random=False, radius=[30, 75], rosetype=\'radius\',
        is_legend_show=False, is_label_show=True,legend_orient=\'vertical\')
pie.render(\'学历要求玫瑰图.html\')

def get_address(list):
    address2 = {}
    for i in set(list):
        address2[i] = list.count(i)
    address2.pop(\'异地招聘\')
    # 有些地名可能不合法或者地图包里没有可以自行删除,之前以下名称都会报错,现在好像更新了
    #address2.pop(\'山东\')
    #address2.pop(\'怒江\')
    #address2.pop(\'池州\')
    return address2
dir2 = get_address(address)
#print(dir2)

geo = Geo("大数据人才需求分布图", title_color="#2E2E2E",
          title_text_size=24,title_top=20,title_pos="center", width=1300,height=600)
attr2 = dir2.keys()
value2 = dir2.values()
geo.add("",attr2, value2, type="effectScatter", is_random=True, visual_range=[0, 1000], maptype=\'china\',symbol_size=8, effect_scale=5, is_visualmap=True)
geo.render(\'大数据城市需求分布图.html\')

def get_experience(list):
    experience2 = {}
    for i in set(list):
         experience2[i] = list.count(i)
    return experience2
dir3 = get_experience(experience)
#print(dir3)

attr3= dir3.keys()
value3 = dir3.values()
funnel = Funnel("工作经验漏斗图",title_pos=\'center\')
funnel.add("", attr3, value3,is_label_show=True,label_pos="inside", label_text_color="#fff",legend_orient=\'vertical\',legend_pos=\'left\')
funnel.render(\'工作经验要求漏斗图.html\')
X = df.score
Y = df.Numbers  
def func(params, x):
        a, b, c = params
        return a*x*x+b*x+c
def error(params,x,y):
     return func(params,x)-y    
def main(a,b,c):
    p0 = [0,0,0]
    Para=leastsq(error,p0,args=(X,Y))
    a,b,c=Para[0]    
    print("a=",a,"b=",b,"c=",c) 
    plt.scatter(X,Y,color="green",label=u"评分分布",linewidth=2)
    x=np.linspace(0,30,20)
    y=a*x*x+b*x+c
    plt.plot(x,y,color="red",label=u"回归方程直线",linewidth=2)     
    plt.title("大数据职位信息关系图")
    plt.legend()
    plt.grid()
    plt.show()
main()
#一元二次回归方程

1.经过对主题数据的分析与可视化,可以得到哪些结论?

经过对主题数据的分析与可视化可以更直观的了解数据
2.对本次程序设计任务完成的情况做一个简单的小结。

通过此次作业了解到了对于函数熟悉应用重要性

对代码不断的修改,对于python有进一步的认识,我明白了数据的分析与可视化,掌握了不少库的使用,加深了对python的热爱通过这次做题任务,我在完成的过程中遇到了很多的困难,让我得到了许多收获,也让我充分的认识到了自己的不足之处!

版权声明:本文为zjw18359016519原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/zjw18359016519/p/13734626.html