LaTeX公式手册(全网最全)
本手册全新编排版正在施工,感兴趣的戳这里!
参考维基百科的数学公式教程
参考Cmd Markdown 公式指导手册
本文为 MathJax 在 Markdown 环境下的语法指引。
如何插入公式
\(\LaTeX\) 的数学公式有两种:行中公式和独立公式(行间公式)。行中公式放在文中与其它文字混编,独立公式单独成行。
行中公式可以用如下方法表示:
$ 数学公式 $
独立公式可以用如下方法表示:
$$ 数学公式 $$
函数、符号及特殊字符
声调 / 变音符号
\dot{a}, \ddot{a}, \acute{a}, \grave{a}
\({\displaystyle {\dot {a}},{\ddot {a}},{\acute {a}},{\grave {a}}}\)
\check{a}, \breve{a}, \tilde{a}, \bar{a}
\({\displaystyle {\check {a}},{\breve {a}},{\tilde {a}},{\bar {a}}}\)
\hat{a}, \widehat{a}, \vec{a}
\({\displaystyle {\hat {a}},{\widehat {a}},{\vec {a}}}\)
标准函数
指数
\exp_a b = a^b, \exp b = e^b, 10^m
\({\displaystyle \exp _{a}b=a^{b},\exp b=e^{b},10^{m}}\)
对数
\ln c, \lg d = \log e, \log_{10} f
\({\displaystyle \ln c,\lg d=\log e,\log _{10}f}\)
三角函数
\sin a, \cos b, \tan c, \cot d, \sec e, \csc f
\({\displaystyle \sin a,\cos b,\tan c,\cot d,\sec e,\csc f}\)
\arcsin a, \arccos b, \arctan c
\({\displaystyle \arcsin a,\arccos b,\arctan c}\)
\arccot d, \arcsec e, \arccsc f
\({\displaystyle \operatorname {arccot} d,\operatorname {arcsec} e,\operatorname {arccsc} f}\)
\sinh a, \cosh b, \tanh c, \coth d
\({\displaystyle \sinh a,\cosh b,\tanh c,\coth d}\)
\operatorname{sh}k, \operatorname{ch}l, \operatorname{th}m, \operatorname{coth}n
\({\displaystyle \operatorname {sh} k,\operatorname {ch} l,\operatorname {th} m,\operatorname {coth} n}\)
\operatorname{argsh}o, \operatorname{argch}p, \operatorname{argth}q
\({\displaystyle \operatorname {argsh} o,\operatorname {argch} p,\operatorname {argth} q}\)
符号函数,绝对值
\sgn r, \left\vert s \right\vert
\({\displaystyle \operatorname {sgn} r,\left\vert s\right\vert }\)
最大值,最小值
\min(x,y), \max(x,y)
\({\displaystyle \min(x,y),\max(x,y)}\)
界限,极限
\min x, \max y, \inf s, \sup t
\({\displaystyle \min x,\max y,\inf s,\sup t}\)
\lim u, \liminf v, \limsup w
\({\displaystyle \lim u,\liminf v,\limsup w}\)
\lim_{x \to \infty} \frac{1}{n(n+1)}
\({\displaystyle \lim_{x \to \infty} \frac{1}{n(n+1)}}\)
\dim p, \deg q, \det m, \ker\phi
\({\displaystyle \dim p,\deg q,\det m,\ker \phi}\)
投射
\Pr j, \hom l, \lVert z \rVert, \arg z
\({\displaystyle \Pr j,\hom l,\lVert z\rVert ,\arg z}\)
微分及导数
dt, \mathrm{d}t, \partial t, \nabla\psi
\({\displaystyle dt,\mathrm {d} t,\partial t,\nabla \psi }\)
dy/dx, \mathrm{d}y/\mathrm{d}x, \frac{dy}{dx}, \frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\partial^2}{\partial x_1\partial x_2}y
\({\displaystyle dy/dx,\mathrm {d} y/\mathrm {d} x,{\frac {dy}{dx}},{\frac {\mathrm {d} y}{\mathrm {d} x}},{\frac {\partial ^{2}}{\partial x_{1}\partial x_{2}}}y}\)
\prime, \backprime, f^\prime, f\', f\'\', f^{(3)}, \dot y, \ddot y
\({\displaystyle \prime ,\backprime ,f^{\prime},f\’,f\’\’,f^{(3)}\!,{\dot {y}},{\ddot {y}}}\)
类字母符号及常数
\infty, \aleph, \complement, \backepsilon, \eth, \Finv, \hbar
\({\displaystyle \infty ,\aleph ,\complement ,\backepsilon ,\eth ,\Finv ,\hbar}\)
\Im, \imath, \jmath, \Bbbk, \ell, \mho, \wp, \Re, \circledS
\({\displaystyle \Im ,\imath ,\jmath ,\Bbbk ,\ell ,\mho ,\wp ,\Re ,\circledS }\)
模运算
s_k \equiv 0 \pmod{m}
\({\displaystyle s_{k}\equiv 0{\pmod {m}}}\)
a \bmod b
\({\displaystyle a \bmod b}\)
\gcd(m, n), \operatorname{lcm}(m, n)
\({\displaystyle \gcd(m,n),\operatorname {lcm} (m,n)}\)
\mid, \nmid, \shortmid, \nshortmid
\({\displaystyle \mid ,\nmid ,\shortmid ,\nshortmid}\)
根号
\surd, \sqrt{2}, \sqrt[n]{}, \sqrt[3]{\frac{x^3+y^3}{2}}
\({\displaystyle \surd ,{\sqrt {2}},{\sqrt[{n}]{}},{\sqrt[{3}]{\frac {x^{3}+y^{3}}{2}}}}\)
运算符
+, -, \pm, \mp, \dotplus
\({\displaystyle +,-,\pm ,\mp ,\dotplus}\)
\times, \div, \divideontimes, /, \backslash
\({\displaystyle \times ,\div ,\divideontimes ,/,\backslash}\)
\cdot, * \ast, \star, \circ, \bullet
\({\displaystyle \cdot ,*\ast ,\star ,\circ ,\bullet}\)
\boxplus, \boxminus, \boxtimes, \boxdot
\({\displaystyle \boxplus ,\boxminus ,\boxtimes ,\boxdot}\)
\oplus, \ominus, \otimes, \oslash, \odot
\({\displaystyle \oplus ,\ominus ,\otimes ,\oslash ,\odot}\)
\circleddash, \circledcirc, \circledast
\({\displaystyle \circleddash ,\circledcirc ,\circledast}\)
\bigoplus, \bigotimes, \bigodot
\({\displaystyle \bigoplus ,\bigotimes ,\bigodot}\)
集合
\{ \}, \O \empty \emptyset, \varnothing
\({\displaystyle \{\},\emptyset \emptyset \emptyset ,\varnothing }\)
\in, \notin \not\in, \ni, \not\ni
\({\displaystyle \in ,\notin \not \in ,\ni ,\not \ni}\)
\cap, \Cap, \sqcap, \bigcap
\({\displaystyle \cap ,\Cap ,\sqcap ,\bigcap}\)
\cup, \Cup, \sqcup, \bigcup, \bigsqcup, \uplus, \biguplus
\({\displaystyle \cup ,\Cup ,\sqcup ,\bigcup ,\bigsqcup ,\uplus ,\biguplus}\)
\setminus, \smallsetminus, \times
\({\displaystyle \setminus ,\smallsetminus ,\times}\)
\subset, \Subset, \sqsubset
\({\displaystyle \subset ,\Subset ,\sqsubset}\)
\supset, \Supset, \sqsupset
\({\displaystyle \supset ,\Supset ,\sqsupset}\)
\subseteq, \nsubseteq, \subsetneq, \varsubsetneq, \sqsubseteq
\({\displaystyle \subseteq ,\nsubseteq ,\subsetneq ,\varsubsetneq ,\sqsubseteq}\)
\supseteq, \nsupseteq, \supsetneq, \varsupsetneq, \sqsupseteq
\({\displaystyle \supseteq ,\nsupseteq ,\supsetneq ,\varsupsetneq ,\sqsupseteq}\)
\subseteqq, \nsubseteqq, \subsetneqq, \varsubsetneqq
\({\displaystyle \subseteqq ,\nsubseteqq ,\subsetneqq ,\varsubsetneqq}\)
\supseteqq, \nsupseteqq, \supsetneqq, \varsupsetneqq
\({\displaystyle \supseteqq ,\nsupseteqq ,\supsetneqq ,\varsupsetneqq}\)
关系符号
=, \ne, \neq, \equiv, \not\equiv
\({\displaystyle =,\neq ,\neq ,\equiv ,\not \equiv}\)
\doteq, \doteqdot,
\overset{\underset{\mathrm{def}}{}}{=},
:=
\({\displaystyle \doteq ,\doteqdot ,{\overset {\underset {\mathrm {def} }{}}{=}},:=}\)
\sim, \nsim, \backsim, \thicksim, \simeq, \backsimeq, \eqsim, \cong, \ncong
\({\displaystyle \sim ,\nsim ,\backsim ,\thicksim ,\simeq ,\backsimeq ,\eqsim ,\cong ,\ncong}\)
\approx, \thickapprox, \approxeq, \asymp, \propto, \varpropto
\({\displaystyle \approx ,\thickapprox ,\approxeq ,\asymp ,\propto ,\varpropto}\)
<, \nless, \ll, \not\ll, \lll, \not\lll, \lessdot
\({\displaystyle <,\nless ,\ll ,\not \ll ,\lll ,\not \lll ,\lessdot}\)
>, \ngtr, \gg, \not\gg, \ggg, \not\ggg, \gtrdot
\({\displaystyle>,\ngtr ,\gg ,\not \gg ,\ggg ,\not \ggg ,\gtrdot }\)
\le, \leq, \lneq, \leqq, \nleq, \nleqq, \lneqq, \lvertneqq
\({\displaystyle \leq ,\leq ,\lneq ,\leqq ,\nleq ,\nleqq ,\lneqq ,\lvertneqq}\)
\ge, \geq, \gneq, \geqq, \ngeq, \ngeqq, \gneqq, \gvertneqq
\({\displaystyle \geq ,\geq ,\gneq ,\geqq ,\ngeq ,\ngeqq ,\gneqq ,\gvertneqq}\)
\lessgtr, \lesseqgtr, \lesseqqgtr, \gtrless, \gtreqless, \gtreqqless
\({\displaystyle \lessgtr ,\lesseqgtr ,\lesseqqgtr ,\gtrless ,\gtreqless ,\gtreqqless}\)
\leqslant, \nleqslant, \eqslantless
\({\displaystyle \leqslant ,\nleqslant ,\eqslantless}\)
\geqslant, \ngeqslant, \eqslantgtr
\({\displaystyle \geqslant ,\ngeqslant ,\eqslantgtr}\)
\lesssim, \lnsim, \lessapprox, \lnapprox
\({\displaystyle \lesssim ,\lnsim ,\lessapprox ,\lnapprox}\)
\gtrsim, \gnsim, \gtrapprox, \gnapprox
\({\displaystyle \gtrsim ,\gnsim ,\gtrapprox ,\gnapprox}\)
\prec, \nprec, \preceq, \npreceq, \precneqq
\({\displaystyle \prec ,\nprec ,\preceq ,\npreceq ,\precneqq}\)
\succ, \nsucc, \succeq, \nsucceq, \succneqq
\({\displaystyle \succ ,\nsucc ,\succeq ,\nsucceq ,\succneqq}\)
\preccurlyeq, \curlyeqprec
\({\displaystyle \preccurlyeq ,\curlyeqprec}\)
\succcurlyeq, \curlyeqsucc
\({\displaystyle \succcurlyeq ,\curlyeqsucc}\)
\precsim, \precnsim, \precapprox, \precnapprox
\({\displaystyle \precsim ,\precnsim ,\precapprox ,\precnapprox}\)
\succsim, \succnsim, \succapprox, \succnapprox
\({\displaystyle \succsim ,\succnsim ,\succapprox ,\succnapprox}\)
几何符号
\parallel, \nparallel, \shortparallel, \nshortparallel
\({\displaystyle \parallel ,\nparallel ,\shortparallel ,\nshortparallel}\)
\perp, \angle, \sphericalangle, \measuredangle, 45^\circ
\({\displaystyle \perp ,\angle ,\sphericalangle ,\measuredangle ,45^{\circ}}\)
\Box, \blacksquare, \diamond, \Diamond \lozenge, \blacklozenge, \bigstar
\({\displaystyle \Box ,\blacksquare ,\diamond ,\Diamond \lozenge ,\blacklozenge ,\bigstar}\)
\bigcirc, \triangle, \bigtriangleup, \bigtriangledown
\({\displaystyle \bigcirc ,\triangle ,\bigtriangleup ,\bigtriangledown}\)
\vartriangle, \triangledown
\({\displaystyle \vartriangle ,\triangledown}\)
\blacktriangle, \blacktriangledown, \blacktriangleleft, \blacktriangleright
\({\displaystyle \blacktriangle ,\blacktriangledown ,\blacktriangleleft ,\blacktriangleright}\)
逻辑符号
\forall, \exists, \nexists
\({\displaystyle \forall ,\exists ,\nexists}\)
\therefore, \because, \And
\({\displaystyle \therefore ,\because ,\And}\)
\or \lor \vee, \curlyvee, \bigvee
\({\displaystyle \lor ,\lor ,\vee ,\curlyvee ,\bigvee}\)
\and \land \wedge, \curlywedge, \bigwedge
\({\displaystyle \land ,\land ,\wedge ,\curlywedge ,\bigwedge}\)
\bar{q}, \bar{abc}, \overline{q}, \overline{abc},
\lnot \neg, \not\operatorname{R}, \bot, \top
\({\displaystyle {\bar {q}},{\bar {abc}},{\overline {q}},{\overline {abc}},}\)
\({\displaystyle \lnot \neg ,\not \operatorname {R} ,\bot ,\top }\)
\vdash \dashv, \vDash, \Vdash, \models
\({\displaystyle \vdash ,\dashv ,\vDash ,\Vdash ,\models}\)
\Vvdash \nvdash \nVdash \nvDash \nVDash
\({\displaystyle \Vvdash ,\nvdash ,\nVdash ,\nvDash ,\nVDash}\)
\ulcorner \urcorner \llcorner \lrcorner
\({\displaystyle \ulcorner \urcorner \llcorner \lrcorner}\)
箭头
\Rrightarrow, \Lleftarrow
\({\displaystyle \Rrightarrow ,\Lleftarrow}\)
\Rightarrow, \nRightarrow, \Longrightarrow \implies
\({\displaystyle \Rightarrow ,\nRightarrow ,\Longrightarrow ,\implies}\)
\Leftarrow, \nLeftarrow, \Longleftarrow
\({\displaystyle \Leftarrow ,\nLeftarrow ,\Longleftarrow}\)
\Leftrightarrow, \nLeftrightarrow, \Longleftrightarrow \iff
\({\displaystyle \Leftrightarrow ,\nLeftrightarrow ,\Longleftrightarrow \iff}\)
\Uparrow, \Downarrow, \Updownarrow
\({\displaystyle \Uparrow ,\Downarrow ,\Updownarrow}\)
\rightarrow \to, \nrightarrow, \longrightarrow
\({\displaystyle \rightarrow \to ,\nrightarrow ,\longrightarrow}\)
\leftarrow \gets, \nleftarrow, \longleftarrow
\({\displaystyle \leftarrow \gets ,\nleftarrow ,\longleftarrow}\)
\leftrightarrow, \nleftrightarrow, \longleftrightarrow
\({\displaystyle \leftrightarrow ,\nleftrightarrow ,\longleftrightarrow}\)
\uparrow, \downarrow, \updownarrow
\({\displaystyle \uparrow ,\downarrow ,\updownarrow}\)
\nearrow, \swarrow, \nwarrow, \searrow
\({\displaystyle \nearrow ,\swarrow ,\nwarrow ,\searrow}\)
\mapsto, \longmapsto
\({\displaystyle \mapsto ,\longmapsto}\)
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons
\({\displaystyle \rightharpoonup ,\rightharpoondown ,\leftharpoonup ,\leftharpoondown ,\upharpoonleft ,\upharpoonright ,\downharpoonleft ,\downharpoonright ,\rightleftharpoons ,\leftrightharpoons}\)
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \rightarrowtail \looparrowright
\({\displaystyle \curvearrowleft ,\circlearrowleft ,\Lsh ,\upuparrows ,\rightrightarrows ,\rightleftarrows ,\rightarrowtail ,\looparrowright}\)
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \leftarrowtail \looparrowleft
\({\displaystyle \curvearrowright ,\circlearrowright ,\Rsh ,\downdownarrows ,\leftleftarrows ,\leftrightarrows ,\leftarrowtail ,\looparrowleft}\)
\hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \twoheadrightarrow \twoheadleftarrow
\({\displaystyle \hookrightarrow ,\hookleftarrow ,\multimap ,\leftrightsquigarrow ,\rightsquigarrow ,\twoheadrightarrow ,\twoheadleftarrow}\)
特殊符号
省略号:数学公式中常见的省略号有两种,\ldots
表示与文本底线对齐的省略号,\cdots
表示与文本中线对齐的省略号。
\amalg \% \dagger \ddagger \ldots \cdots
\({\displaystyle \amalg \%\dagger \ddagger \ldots \cdots}\)
\smile \frown \wr \triangleleft \triangleright
\({\displaystyle \smile \frown \wr \triangleleft \triangleright}\)
\diamondsuit, \heartsuit, \clubsuit, \spadesuit, \Game, \flat, \natural, \sharp
\({\displaystyle \diamondsuit ,\heartsuit ,\clubsuit ,\spadesuit ,\Game ,\flat ,\natural ,\sharp}\)
未分类
\diagup \diagdown \centerdot \ltimes \rtimes \leftthreetimes \rightthreetimes
\({\displaystyle \diagup ,\diagdown ,\centerdot ,\ltimes ,\rtimes ,\leftthreetimes ,\rightthreetimes}\)
\eqcirc \circeq \triangleq \bumpeq \Bumpeq \doteqdot \risingdotseq \fallingdotseq
\({\displaystyle \eqcirc ,\circeq ,\triangleq ,\bumpeq ,\Bumpeq ,\doteqdot ,\risingdotseq ,\fallingdotseq}\)
\intercal \barwedge \veebar \doublebarwedge \between \pitchfork
\({\displaystyle \intercal ,\barwedge ,\veebar ,\doublebarwedge ,\between ,\pitchfork}\)
\vartriangleleft \ntriangleleft \vartriangleright \ntriangleright
\({\displaystyle \vartriangleleft ,\ntriangleleft ,\vartriangleright ,\ntriangleright}\)
\trianglelefteq \ntrianglelefteq \trianglerighteq \ntrianglerighteq
\({\displaystyle \trianglelefteq ,\ntrianglelefteq ,\trianglerighteq ,\ntrianglerighteq}\)
关于这些符号的更多语义,参阅 TeX Cookbook 的简述。
上标、下标及积分等
功能|语法|效果
^
表示上标, _
表示下标。如果上下标的内容多于一个字符,需要用 {}
将这些内容括成一个整体。上下标可以嵌套,也可以同时使用。
上标
a^2
\({\displaystyle a^{2}}\)
下标
a_2
\({\displaystyle a_{2}}\)
组合
a^{2+2}
\({\displaystyle a^{2+2}}\)
a_{i,j}
\({\displaystyle a_{i,j}}\)
结合上下标
x_2^3
\({\displaystyle x_{2}^{3}}\)
前置上下标
{}_1^2\!X_3^4
\({\displaystyle {}_{1}^{2}\!X_{3}^{4}}\)
导数(HTML)
x\'
\({\displaystyle x\’}\)
导数(PNG)
x^\prime
\({\displaystyle x^{\prime}}\)
导数(错误)
x\prime
\({\displaystyle x\prime}\)
导数点
\dot{x}
\({\displaystyle {\dot {x}}}\)
\ddot{y}
\({\displaystyle {\ddot {y}}}\)
向量
\vec{c}
(只有一个字母)
\({\displaystyle {\vec {c}}}\)
\overleftarrow{a b}
\({\displaystyle {\overleftarrow {ab}}}\)
\overrightarrow{c d}
\({\displaystyle {\overrightarrow {cd}}}\)
\overleftrightarrow{a b}
\({\displaystyle {\overleftrightarrow {ab}}}\)
\widehat{e f g}
\({\displaystyle {\widehat {efg}}}\)
上弧
(注: 正确应该用 \overarc,但在这里行不通。要用建议的语法作为解决办法。)(使用 \ overarc 时需要引入 {arcs} 包。)
\overset{\frown} {AB}
\({\displaystyle {\overset {\frown}{AB}}}\)
上划线
\overline{h i j}
\({\displaystyle {\overline {hij}}}\)
下划线
\underline{k l m}
\({\displaystyle {\underline {klm}}}\)
上括号
\overbrace{1+2+\cdots+100}
\({\displaystyle \overbrace {1+2+\cdots +100} }\)
\begin{matrix} 5050 \\ \overbrace{ 1+2+\cdots+100 } \end{matrix}
\({\displaystyle {\begin{matrix}5050\\\overbrace {1+2+\cdots +100} \end{matrix}}}\)
下括号
\underbrace{a+b+\cdots+z}
\({\displaystyle \underbrace {a+b+\cdots +z} }\)
\begin{matrix} \underbrace{ a+b+\cdots+z } \\ 26 \end{matrix}
\({\displaystyle {\begin{matrix}\underbrace {a+b+\cdots +z} \\26\end{matrix}}}\)
求和(累加)
\sum_{k=1}^N k^2
\({\displaystyle \sum _{k=1}^{N}k^{2}}\)
\begin{matrix} \sum_{k=1}^N k^2 \end{matrix}
\({\displaystyle {\begin{matrix}\sum _{k=1}^{N}k^{2}\end{matrix}}}\)
求积(累乘)
\prod_{i=1}^N x_i
\({\displaystyle \prod _{i=1}^{N}x_{i}}\)
\begin{matrix} \prod_{i=1}^N x_i \end{matrix}
\({\displaystyle {\begin{matrix}\prod _{i=1}^{N}x_{i}\end{matrix}}}\)
上积
\coprod_{i=1}^N x_i
\({\displaystyle \coprod _{i=1}^{N}x_{i}}\)
\begin{matrix} \coprod_{i=1}^N x_i \end{matrix}
\({\displaystyle {\begin{matrix}\coprod _{i=1}^{N}x_{i}\end{matrix}}}\)
极限
\lim_{n \to \infty}x_n
\({\displaystyle \lim _{n\to \infty}x_{n}}\)
\begin{matrix} \lim_{n \to \infty}x_n \end{matrix}
\({\displaystyle {\begin{matrix}\lim _{n\to \infty }x_{n}\end{matrix}}}\)
积分
\int_{-N}^{N} e^x\, {\rm d}x
\({\displaystyle \int _{-N}^{N}e^{x}\,{\rm d} x}\)
本例中 \,
和 {\rm d}
部分可省略,但建议加入,能使式子更美观。{\rm d}
可以用\mathrm{d}
等价替换。
\begin{matrix} \int_{-N}^{N} e^x\, \mathrm{d}x \end{matrix}
(矩阵中积分符号变小)
\({\displaystyle {\begin{matrix}\int _{-N}^{N}e^{x}\,\mathrm {d} x\end{matrix}}}\)
双重积分
\iint_{D}^{W} \, \mathrm{d}x\,\mathrm{d}y
\({\displaystyle \iint _{D}^{W}\,\mathrm {d} x\,\mathrm {d} y}\)
三重积分
\iiint_{E}^{V} \, \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z
\({\displaystyle \iiint _{E}^{V}\,\mathrm {d} x\,\mathrm {d} y\,\mathrm {d} z}\)
闭合的曲线、曲面积分
\oint_{C} x^3\, \mathrm{d}x + 4y^2\, \mathrm{d}y
\({\displaystyle \oint _{C}x^{3}\,\mathrm {d} x+4y^{2}\,\mathrm {d} y}\)
交集
\bigcap_1^{n} p
\({\displaystyle \bigcap _{1}^{n}p}\)
并集
\bigcup_1^{k} p
\({\displaystyle \bigcup _{1}^{k}p}\)
分数
通常使用 \frac {分子} {分母}
命令产生一个分数,分数可嵌套。
便捷情况可直接输入 \frac ab
来快速生成一个 \(\frac ab\) 。
如果分式很复杂,亦可使用 分子 \over 分母
命令,此时分数仅有一层。
功能|语法|效果
分数
\frac{2}{4}=0.5
\({\displaystyle {\frac {2}{4}}=0.5}\)
小型分数
\tfrac{2}{4} = 0.5
\({\displaystyle {\tfrac {2}{4}}=0.5}\)
连分式(大型嵌套分式)
\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a
\({\displaystyle {\cfrac {2}{c+{\cfrac {2}{d+{\cfrac {2}{4}}}}}}=a}\)
大型不嵌套分式
\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a
\({\displaystyle {\dfrac {2}{4}}=0.5\qquad {\dfrac {2}{c+{\dfrac {2}{d+{\dfrac {2}{4}}}}}}=a}\)
二项式系数
\dbinom{n}{r}=\binom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}
\({\displaystyle {\dbinom {n}{r}}={\binom {n}{n-r}}=\mathrm {C} _{n}^{r}=\mathrm {C} _{n}^{n-r}}\)
小型二项式系数
\tbinom{n}{r}=\tbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}
\({\displaystyle {\tbinom {n}{r}}={\tbinom {n}{n-r}}=\mathrm {C} _{n}^{r}=\mathrm {C} _{n}^{n-r}}\)
大型二项式系数
\binom{n}{r}=\dbinom{n}{n-r}=\mathrm{C}_n^r=\mathrm{C}_n^{n-r}
\({\displaystyle {\binom {n}{r}}={\dbinom {n}{n-r}}=\mathrm {C} _{n}^{r}=\mathrm {C} _{n}^{n-r}}\)
在以e为底的指数函数、极限和积分中尽量不要使用 \frac
符号:它会使整段函数看起来很怪,而且可能产生歧义。也正是因此它在专业数学排版中几乎从不出现。
横着写这些分式,中间使用斜线间隔 /
(用斜线代替分数线)。
- 例子:
\begin{array}{cc}
\mathrm{Bad} & \mathrm{Better} \\
\hline \\
e^{i\frac{\pi}2} \quad e^{\frac{i\pi}2}& e^{i\pi/2} \\
\int_{-\frac\pi2}^\frac\pi2 \sin x\,dx & \int_{-\pi/2}^{\pi/2}\sin x\,dx \\
\end{array}
- 显示:
\mathrm{Bad} & \mathrm{Better} \\
\hline \\
e^{i\frac{\pi}2} \quad e^{\frac{i\pi}2}& e^{i\pi/2} \\
\int_{-\frac\pi2}^\frac\pi2 \sin x\,dx & \int_{-\pi/2}^{\pi/2}\sin x\,dx \\
\end{array}
\]
矩阵、条件表达式、方程组
语法:
\begin{类型}
公式内容
\end{类型}
类型可以是:矩阵 matrix
pmatrix
bmatrix
Bmatrix
vmatrix
Vmatrix
、条件表达式 cases
、多行对齐方程式 aligned
、数组 array
。
在公式内容中:在每一行中插入 &
来指定需要对齐的内容,在每行结尾处使用 \\
换行。
无框矩阵
在开头使用 begin{matrix}
,在结尾使用 end{matrix}
,在中间插入矩阵元素,每个元素之间插入 &
,并在每行结尾处使用 \\
。
\begin{matrix}
x & y \\
z & v
\end{matrix}
\({\displaystyle {\begin{matrix}x&y\\z&v\end{matrix}}}\)
有框矩阵
在开头将 matrix
替换为 pmatrix
bmatrix
Bmatrix
vmatrix
Vmatrix
。
\begin{vmatrix}
x & y \\
z & v
\end{vmatrix}
\({\displaystyle {\begin{vmatrix}x&y\\z&v\end{vmatrix}}}\)
\begin{Vmatrix}
x & y \\
z & v
\end{Vmatrix}
\({\displaystyle {\begin{Vmatrix}x&y\\z&v\end{Vmatrix}}}\)
使用 \cdots
\(\cdots\) , \ddots
\(\ddots\) , \vdots
\(\vdots\) 来输入省略符号。
\begin{bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{bmatrix}
\({\displaystyle {\begin{bmatrix}0&\cdots &0\\\vdots &\ddots &\vdots \\0&\cdots &0\end{bmatrix}}}\)
\begin{Bmatrix}
x & y \\
z & v
\end{Bmatrix}
\({\displaystyle {\begin{Bmatrix}x&y\\z&v\end{Bmatrix}}}\)
\begin{pmatrix}
x & y \\
z & v
\end{pmatrix}
\({\displaystyle {\begin{pmatrix}x&y\\z&v\end{pmatrix}}}\)
条件表达式
f(n) =
\begin{cases}
n/2, & \text{if }n\text{ is even} \\
3n+1, & \text{if }n\text{ is odd}
\end{cases}
\({\displaystyle f(n)={\begin{cases}n/2,&{\text{if }}n{\text{ is even}}\\3n+1,&{\text{if }}n{\text{ is odd}}\end{cases}}}\)
多行等式、同余式
人们经常想要一列整齐且居中的方程式序列。使用 \begin{aligned}…\end{aligned}
。
\begin{aligned}
f(x) & = (m+n)^2 \\
& = m^2+2mn+n^2 \\
\end{aligned}
\({\displaystyle {\begin{aligned}f(x)&=(m+n)^{2}\\&=m^{2}+2mn+n^{2}\\\end{aligned}}}\)
begin{aligned}
3^{6n+3}+4^{6n+3}
& \equiv (3^3)^{2n+1}+(4^3)^{2n+1}\\
& \equiv 27^{2n+1}+64^{2n+1}\\
& \equiv 27^{2n+1}+(-27)^{2n+1}\\
& \equiv 27^{2n+1}-27^{2n+1}\\
& \equiv 0 \pmod{91}\\
\end{aligned}
\({\displaystyle {\begin{aligned}3^{6n+3}+4^{6n+3}&\equiv (3^{3})^{2n+1}+(4^{3})^{2n+1}\\&\equiv 27^{2n+1}+64^{2n+1}\\&\equiv 27^{2n+1}+(-27)^{2n+1}\\&\equiv 27^{2n+1}-27^{2n+1}\\&\equiv 0{\pmod {91}}\\\end{aligned}}}\)
\begin{alignedat}{3}
f(x) & = (m-n)^2 \\
f(x) & = (-m+n)^2 \\
& = m^2-2mn+n^2 \\
\end{alignedat}
\({\displaystyle {\begin{alignedat}{3}f(x)&=(m-n)^{2}\\f(x)&=(-m+n)^{2}\\&=m^{2}-2mn+n^{2}\\\end{alignedat}}}\)
方程组
\begin{cases}
3x + 5y + z \\
7x - 2y + 4z \\
-6x + 3y + 2z
\end{cases}
\]
或
\left\{\begin{aligned}
3x + 5y + z \\
7x - 2y + 4z \\
-6x + 3y + 2z
\end{aligned}\right.
3x + 5y + z \\
7x – 2y + 4z \\
-6x + 3y + 2z
\end{aligned}\right.
\]
数组与表格
通常,一个格式化后的表格比单纯的文字或排版后的文字更具有可读性。数组和表格均以 \begin{array}
开头,并在其后定义列数及每一列的文本对齐属性,c
l
r
分别代表居中、左对齐及右对齐。若需要插入垂直分割线,在定义式中插入 |
,若要插入水平分割线,在下一行输入前插入 \hline
。与矩阵相似,每行元素间均须要插入 &
,每行元素以 \\
结尾,最后以 \end{array}
结束数组。
- 例子:
\begin{array}{c|lcr}
n & \text{左对齐} & \text{居中对齐} & \text{右对齐} \\
\hline
1 & 0.24 & 1 & 125 \\
2 & -1 & 189 & -8 \\
3 & -20 & 2000 & 1+10i
\end{array}
- 显示:
n & \text{左对齐} & \text{居中对齐} & \text{右对齐} \\
\hline
1 & 0.24 & 1 & 125 \\
2 & -1 & 189 & -8 \\
3 & -20 & 2000 & 1+10i
\end{array}
\]
- 例子:
\begin{array}{lcl}
z & = & a \\
f(x,y,z) & = & x + y + z
\end{array}
- 显示:
\({\displaystyle {\begin{array}{lcl}z&=&a\\f(x,y,z)&=&x+y+z\end{array}}}\)
- 例子:
\begin{array}{lcr}
z & = & a \\
f(x,y,z) & = & x + y + z
\end{array}
- 显示:
\({\displaystyle {\begin{array}{lcr}z&=&a\\f(x,y,z)&=&x+y+z\end{array}}}\)
- 例子:
\begin{array}{ccc}
a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0\\
\end{array}
- 显示:
\]
嵌套数组或表格
多个数组/表格可 互相嵌套 并组成一组数组/一组表格。
使用嵌套前必须声明 $$
符号。
- 例子:
% outer vertical array of arrays 外层垂直表格
\begin{array}{c}
% inner horizontal array of arrays 内层水平表格
\begin{array}{cc}
% inner array of minimum values 内层"最小值"数组
\begin{array}{c|cccc}
\text{min} & 0 & 1 & 2 & 3\\
\hline
0 & 0 & 0 & 0 & 0\\
1 & 0 & 1 & 1 & 1\\
2 & 0 & 1 & 2 & 2\\
3 & 0 & 1 & 2 & 3
\end{array}
&
% inner array of maximum values 内层"最大值"数组
\begin{array}{c|cccc}
\text{max}&0&1&2&3\\
\hline
0 & 0 & 1 & 2 & 3\\
1 & 1 & 1 & 2 & 3\\
2 & 2 & 2 & 2 & 3\\
3 & 3 & 3 & 3 & 3
\end{array}
\end{array}
% 内层第一行表格组结束
\\
% inner array of delta values 内层第二行Delta值数组
\begin{array}{c|cccc}
\Delta&0&1&2&3\\
\hline
0 & 0 & 1 & 2 & 3\\
1 & 1 & 0 & 1 & 2\\
2 & 2 & 1 & 0 & 1\\
3 & 3 & 2 & 1 & 0
\end{array}
% 内层第二行表格组结束
\end{array}
- 显示:
\begin{array}{c}
% inner horizontal array of arrays 内层水平表格
\begin{array}{cc}
% inner array of minimum values 内层”最小值”数组
\begin{array}{c|cccc}
\text{min} & 0 & 1 & 2 & 3\\
\hline
0 & 0 & 0 & 0 & 0\\
1 & 0 & 1 & 1 & 1\\
2 & 0 & 1 & 2 & 2\\
3 & 0 & 1 & 2 & 3
\end{array}
&
% inner array of maximum values 内层”最大值”数组
\begin{array}{c|cccc}
\text{max}&0&1&2&3\\
\hline
0 & 0 & 1 & 2 & 3\\
1 & 1 & 1 & 2 & 3\\
2 & 2 & 2 & 2 & 3\\
3 & 3 & 3 & 3 & 3
\end{array}
\end{array}
% 内层第一行表格组结束
\\
% inner array of delta values 内层第二行Delta值数组
\begin{array}{c|cccc}
\Delta&0&1&2&3\\
\hline
0 & 0 & 1 & 2 & 3\\
1 & 1 & 0 & 1 & 2\\
2 & 2 & 1 & 0 & 1\\
3 & 3 & 2 & 1 & 0
\end{array}
% 内层第二行表格组结束
\end{array}
\]
用数组实现带分割符号的矩阵
- 例子:
$$
\left[
\begin{array}{cc|c}
1&2&3\\
4&5&6
\end{array}
\right]
$$
- 显示:
\begin{array}{cc|c}
1&2&3\\
4&5&6
\end{array}
\right]
\]
其中 cc|c
代表在一个三列矩阵中的第二和第三列之间插入分割线。
字体
希腊字母
输入 \小写希腊字母英文全称
和 \首字母大写希腊字母英文全称
来分别输入小写和大写希腊字母。
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta
\({\displaystyle \mathrm {A} \mathrm {B} \Gamma \Delta \mathrm {E} \mathrm {Z} \mathrm {H} \Theta }\)
\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi
\({\displaystyle \mathrm {I} \mathrm {K} \Lambda \mathrm {M} \mathrm {N} \mathrm {O} \Xi \Pi }\)
\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega
\({\displaystyle \mathrm {P} \Sigma \mathrm {T} \Upsilon \Phi \mathrm {X} \Psi \Omega }\)
\alpha \beta \gamma \delta \epsilon \zeta \eta \theta
\({\displaystyle \alpha \beta \gamma \delta \epsilon \zeta \eta \theta}\)
\iota \kappa \lambda \mu \nu \omicron \xi \pi
\({\displaystyle \iota \kappa \lambda \mu \nu \mathrm {o} \xi \pi }\)
\rho \sigma \tau \upsilon \phi \chi \psi \omega
\({\displaystyle \rho \sigma \tau \upsilon \phi \chi \psi \omega}\)
部分字母有变量专用形式,以 \var-
开头。
\varepsilon \digamma \varkappa \varpi
\({\displaystyle \varepsilon \digamma \varkappa \varpi}\)
\varrho \varsigma \vartheta \varphi
\({\displaystyle \varrho \varsigma \vartheta \varphi}\)
希伯来符号
\aleph \beth \gimel \daleth
\({\displaystyle \aleph \beth \gimel \daleth}\)
部分字体的简称
若要对公式的某一部分字符进行字体转换,可以用 {\字体 {需转换的部分字符}}
命令,其中 \字体
部分可以参照下表选择合适的字体。一般情况下,公式默认为意大利体 \(italic\) 。
|输入|说明|显示|输入|说明|显示|
|:–