向量的点积(英语:dot product)(数量积的定义):

 

几何意义是:是一条边向另一条边的投影乘以另一条边的长度。

 

 

在其物理上面的几何意义是容易理解的。如下图所示:

现在求F1在水平方向上的做功:

W = F1 * Cosθ * S

那么套用数量积公式:

力F1在水平方向位移S,可以表示为:

F1 * S = Cosθ * |F1| * |S|

上面的数量积公式的使用如下:

当θ夹角小于90度时,F1 * S > 0

当θ夹角大于90度时,F1 * S < 0

利用上面的特性,在游戏的开发中可以作为一个玩家的视野计算,对玩家身前可能存在的碰撞进行检测。

如上图所示,2号蓝线为玩家的面朝的方向,我们可以知道1和3红线对2线的夹角是小于90度的,这也就是玩家的面朝的方向

再看4号线,与2号线的夹角是大于90度的,故向量2与向量4的点积是小于0的,故我们可以判断4是玩家的视野盲区,也就是玩家的身后。

我们如果需要对玩家身前是否有障碍需要判断的话,可以通过向量来实现。

————————————————————————————————-

我们首先设置的是RPG玩家的位置,假设是(10,10)

下面的向量描述都是以玩家为中心的描述。

我们设置他的视野范围是5,知道主角的朝向假设是向量(1,1)

现在有一个箱子的向量是(-3,4);

利用点积公式:

1 * (-3) + 1 * 4 = 1

因为1大于0,推导出他们的夹角θ是大于0小于等于90度的

故该箱子一定是位于玩家的前方的。

再次假设,玩家的视野角度是60度。计算Cosθ的值

Cosθ = 2 / (sqrt(2) * 5) = 2 / (1.4 * 5) = 2 / 7 = 0.2857

计算反余弦:ArcCos 0.2857 =  73.399305 ° 

知道了箱子与玩家朝向的向量(1,1)的夹角是73度,故可以知道,该箱子不在玩家的视野中。

如果还不懂,可以对照下图的大致图解:

 

版权声明:本文为vokie原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/vokie/p/3602095.html