本文始发于个人公众号:TechFlow,原创不易,求个关注

今天的文章我们来讨论大名鼎鼎的泰勒公式泰勒公式真的非常有名,我相信上过高数课的一定都记得它的大名。即使你翘掉了所有的课,也一定会在考前重点里见过。

我对它的第一映像就是比较难,而且感觉没有太多意思,就是一个近似的函数而已。最近重温了一下有了一些新的心得,希望尽我所能讲解清楚。

泰勒公式的用途

在看具体的公式和证明之前,我们先来了解一下它的用途,然后带着对用途的理解再去思考它出现的背景以及原理会容易许多。这也是我自学这么久总结出来的规律。

泰勒公式本质解决的是近似的问题,比如说我们有一个看起来很复杂的方程,我们直接计算方程本身的值可能非常麻烦。所以我们希望能够找到一个近似的方法来获得一个足够近似的值。

从这里,我们得到了两个重点,一个是近似的方法,另一个是近似的精度。我们既需要找到合适的方法来近似,同时也需要保证近似的精度是可控的。否则一切都没有意义,结合实际其实很好理解,比如我们用机床造一个零件。我们都知道世界上不存在完美的圆,实际上我们也并不需要完美,但是我们需要保证偏差是可控的,并且在一定的范围内。泰勒公式也是一样,它既可以帮助我们完成近似,也可以保证得到的结果是足够精确的。

泰勒公式的定义

我们下面来看看泰勒公式的定义,我们已经知道了它的用途是求一个函数的近似值。但是我们怎么来求呢,其实一个比较朴素的思路是通过斜率逼近

举个例子:

这是一张经典的导数图,从上图我们可以看到,随着\(\Delta x\)的减小,点\(P_0\)\(P\)也会越来越接近,这就带来了\(\Delta y\)越来越接近\(\Delta x \cdot f\'(x_0)\)

当然,当\(\Delta x\)比较大的时候显然误差就会比较大,为了缩小误差,我们可以引入二阶导数、三阶导数以及高阶导数。由于我们并不知道函数究竟可以有多少阶导数,我们不妨假设f(x)在区间内一直有(n+1)阶导数,我们试着写出一个多项式来逼近原函数:

\[P_n(x)=a_0+a_1(x-x_0)+a_2(x-x_0)^2+\cdots+a_n(x-x_0)^n
\]

我们希望这个式子与原值的误差越小越好,究竟要多小才算足够好呢?数学家们给出了定义,希望它是\((x-x_0)^n\)的高阶无穷小。也就是说误差比上\((x-x_0)^n\)的极限是0。

我们前面说了,我们是通过导数来逼近的,所以我们假设:

\[\begin{aligned}
P_n(x_0) &= f(x_0), P_n\'(x_0) = f\'(x_0) \\
P_n\’\'(x_0) &= f\’\'(x_0), \cdots, P_n^{(n)} = f^{(n)}(x_0)
\end{aligned}
\]

按照这个假设我们可以很方便地得到系数了,其实很简单,我们构造系数使得求导之后相乘的常数项全部约掉。

\[\begin{aligned}
a_0 = f(x_0), 1\cdot a_1 = f\'(x_0) \\
2!\cdot a_2 = f\’\'(x_0), \cdots, n!\cdot a_n = f^n(x_0)
\end{aligned}
\]

我们把这两个式子带入一下,可以得到:

\[P_n(x)=f(x_0)+f\'(x_0)(x – x_0)+\frac{f\’\'(x_0)}{2!}(x – x_0)^2+\cdots+\frac{f^{(n)}}{n!}(x-x_0)^n
\]

泰勒公式的证明

其实上面的式子就是泰勒公式的内涵了,也就是说我们通过高阶导数来逼近了原函数。最后我们只需要证明这个式子就是我们想要的,也就是它的误差足够小。

我们同样用一个函数\(R(x)\)来表示\(P_n(x)\)与原函数\(f(x)\)的差值。我们直接比较比较困难,所以数学家采取了一系列花里胡哨、叹为观止的操作。

我们带入一下可以发现,\(R(x_0)=0\),不仅如此,\(R\'(x_0)=R\’\'(x_0)=\cdots=R^{(n)}(x_0)=0\)

以上步骤完全不需要证明,我们直接带入求导就可以得到。因为存在\(x-x_0\)的项,很明显当\(x=x_0\)的时候,可以得到如上的结论。

到这里,我们需要进行一个猜测,这里的步骤有一点跳跃。就连课本上都没有详细的解释,没有详细解释的原因也很简单,因为需要用到积分的知识。而读者在这里是还没有接触过积分的,不过,我们不是严谨的论文,可以稍稍放松一些。其实根据上面的公式,我们是可以有些猜测的。根据上面的规律,以及我们的目标——证明这个\(R(x)\)函数是一个关于\((x-x_0)^n\)的无穷小,所以我们可以猜测它应该是一个与\((x-x_0)^{n+1}\)相关的函数。

有了这个猜测之后,我们套用一下柯西中值定理:

\[\frac{f(b) – f(a)}{F(b) – F(a)}=\frac{f\'(\xi)}{F\'(\xi)}
\]

我们令\(f(x)=R_n(x), F(x)=(x-x_0)^{n+1}\),套用中值定理可以得到:

\[\frac{R_n(x)}{(x-x_0)^{n+1}}=\frac{R_n(x)-R_n(x_0)}{(x-x_0)^{n+1}-0}=\frac{R\’_n(\xi_1)}{(n+1)(\xi_1-x_0)^n}, (\xi_1 \in (x_0, x))
\]

有了这个结论之后,我们再对函数\(R_n\'(x)\)\((n+1)(x-x_0)^n\)在区间\((x_0, \xi_1)\)上再次应用柯西中值定理:

\[\frac{R_n\'(\xi_1)}{(\xi_1 – x_0)^n}=\frac{R\’_n(\xi_1)-R_n\'(x_0)}{(n+1)(\xi_1-x_0)^n-0}=\frac{R\’\’_n(\xi_2)}{n(n+1)(\xi_2-x_0)^{n-1}}, (\xi_2 \in (x_0, \xi_1))
\]

接下来就是熟悉的套娃环节了,经过一共n+1次套娃之后,我们可以得到:

\[\frac{R_n(x)}{(x-x_0)^{n+1}}=\frac{R^{(n+1)}_n(\xi)}{(n+1)!}, (\xi \in (x_0, \xi_n))
\]

我们对\(P_n(x)\)求n+1次导数,可以得到0,因为所有项最多只有n次,求n+1次导数之后全部变成0。也就是说\(P^{(n+1)}_n(x)=0\),所以\(R^{(n+1)}_n(x)=f^{(n+1)}_n(x)\),我们把这项代入上式,可以得到:

\[R_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}, (\xi \in (x_0, x))
\]

证明一下误差

接下来我们要证明这个误差\(R_n(x)\)\((x-x_0)^{n+1}\)的高阶无穷小。

到这里,证明就很简单了,在固定的区间(a, b)中,很明显函数\(f^{(n+1)}(x)\)存在最大值,我们假设这个最大值是M。也就是说\(f^{(n+1)}(x) \leq M, x \in (a, b)\)

那么:

\[\lim_{x\to x_0}\frac{R_n(x)}{(x-x_0)^n} \leq \lim_{x\to x_0} \frac{\frac{M(x-x_0)^{n+1}}{(n+1)!}}{(x-x_0)^n}=\lim_{x\to x_0}\frac{M(x-x_0)}{(n+1)!}
\]

由于x逼近\(x_0\),M是一个常数,所以这个极限趋向于0,我们可以用极限的定义很容易证明。于是我们证明了,误差\(R_n(x)\)是比\((x-x_0)^n\)更高阶的无穷小。

所以我们可以得到:

\[f(x)=f(x_0)+f\'(x_0)(x – x_0)+\frac{f\’\'(x_0)}{2!}(x – x_0)^2+\cdots+\frac{f^{(n)}}{n!}(x-x_0)^n+R_n(x)
\]

由于我们一共用到了n阶导数来表达原函数,所以我们称为这是原函数f(x)的n阶泰勒展开。最后的\(R_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}, (\xi \in (x_0, x))\),我们称它为拉格朗日余项。我们也可以简写为\(o[(x-x_0)^n]\),它称为佩亚诺型余项,其实和拉格朗日余项是一回事,只是写的形式不同。

我们如果令\(x_0=0\)的话,还可以将式子进一步化简。由于\(\xi\)在0和x中间,所以我们可以令$\xi=\theta x, (0 < \theta < 1) $,原公式可以写成:

\[f(x)=f(0)+f\'(0)x + \frac{f\’\'(0)}{2!}x^2+\cdots + \frac{f^{(n)}(0)}{n!}x^n+\frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1}, (0 < \theta < 1)
\]

和上面的式子相比,这个式子要简单许多,它也有一个名字,叫做麦克劳林公式。在麦克劳林公式下的佩亚诺余项写成\(o(x^n)\),看起来非常简单。

如果觉得上面的式子有点多记不过来可以忽略原式,只需要记住麦克劳林公式即可。对于拉格朗日余项,我们也只会在计算误差的时候用到,在不需要考虑误差的场景下也可以忽略。

举例

下面我们来看一个实际的例子,来感受一下泰勒公式的强大。

我们都知道有一些函数的值我们很难直接计算,比如\(f(x)=e^x\),和正弦余弦函数等。由于e本身就是一个无理数,有没有想过我们怎么来求一个带e的函数值?其实很多时候,就是用的泰勒公式。

我们就用\(f(x)=e^x\)举例,看看怎么利用泰勒公式来计算\(e^x\)

为了简化计算,我们显然考虑麦克劳林公式。由于\(x=0\)时,\(e^x=0\),并且\(f\'(x)=e^x\)

所以我们可以得到:

\[f\'(0)=f\’\'(0)=f\’\’\'(0)=\cdots =f^{(n)}(0)=1
\]

我们代入泰勒公式,可以得到:

\[e^x=1 + x + \frac{1}{2!}x^2+\frac{1}{3!}x^3+\cdots+\frac{1}{n!}x^n+\frac{e^{\theta x}}{(n+1)!}x^{n+1}
\]

我们如果把最后一项当成误差,那么可以得到:

\[e^x\approx 1 + x + \frac{1}{2!}x^2+\frac{1}{3!}x^3+\cdots+\frac{1}{n!}x^n
\]

当n=10时,x=1,产生的误差为:

\[\frac{e^{\theta x}}{(n+1)!}x^{n+1}\leq \frac{e}{11!}<\frac{3}{11!}
\]

我们稍微算一下就可以知道,这个误差小于\(10^{-6}\),已经足够接近了。也就是说我们把原本不太好计算的函数转化成了若干个多项式的和,可以非常简单地获得一个足够接近的近似值。并且除此之外,我们还能算出它的最大误差,实在是非常完美了。

思考

到这里还没有结束,看完所有的推导和计算之后,不知道你们有没有一个疑惑,这么一个牛叉并且复杂并且有用的公式,泰勒是怎么灵光一闪想到的?好像用一时的灵感很难解释。毕竟人的灵感往往都是一瞬间对某个点的顿悟,而这么多公式和结论是很难顿悟的。

之前上学的时候我完全没有意识到这个问题,这次重温的时候才觉得不对。当然你可能会说这里有这么多数学家的名字,显然不是一个人的功劳。但即使是这样,我仍然好奇,究竟是什么起因引出了这么伟大的公式?

直到我无意间看到知乎撒欢大神的回答才恍然大悟。

我们设想一个问题,如果f(x)=g(x),那么显然f(x)和g(x)的各阶导数全都相等。那么问题来了,如果我们人为地构造一个函数h(x),使得它的各阶导数和g(x)吻合,那么是不是可以认为这个我们人为构造出来的函数也和g(x)相等呢?

然而有些函数的高阶导数是无穷无尽的,我们不可能人工全部拟合,所以只能退而求其次,拟合其中的n项。显然这样会有误差,那么我们需要知道误差的大小。于是就有了后面的拉格朗日余项大小的推算。

泰勒公式的出现和推导过程正是基于这样的思路,想到这里,我又有了新的想法。如果把各阶导数的项看成是特征,那么这个问题其实转化成了机器学习当中的回归问题,只不过在机器学习当中我们是设定优化目标和优化方法,让模型自行训练来拟合逼近,而泰勒公式其实是通过思维和数学的力量推算出了结果,两者的目的和结果是一样的,但是过程完全迥异,两个看似完全风马牛不相及的问题殊途同归,不得不说数学的魅力真的令人折服。

今天的文章就是这些,如果觉得有所收获,请顺手扫码点个关注吧,你们的举手之劳对我来说很重要。

版权声明:本文为techflow原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/techflow/p/12424803.html