Python爬虫原理
前言
简单来说互联网是由一个个站点和网络设备组成的大网,我们通过浏览器访问站点,站点把HTML、JS、CSS代码返回给浏览器,这些代码经过浏览器解析、渲染,将丰富多彩的网页呈现我们眼前;
一、爬虫是什么?
如果我们把互联网比作一张大的蜘蛛网,数据便是存放于蜘蛛网的各个节点,而爬虫就是一只小蜘蛛,
沿着网络抓取自己的猎物(数据)爬虫指的是:向网站发起请求,获取资源后分析并提取有用数据的程序;
从技术层面来说就是 通过程序模拟浏览器请求站点的行为,把站点返回的HTML代码/JSON数据/二进制数据(图片、视频) 爬到本地,进而提取自己需要的数据,存放起来使用;
二、爬虫的基本流程:
用户获取网络数据的方式:
方式1:浏览器提交请求—>下载网页代码—>解析成页面
方式2:模拟浏览器发送请求(获取网页代码)->提取有用的数据->存放于数据库或文件中
爬虫要做的就是方式2;
1、发起请求
使用http库向目标站点发起请求,即发送一个Request
Request包含:请求头、请求体等
Request模块缺陷:不能执行JS 和CSS 代码
2、获取响应内容
如果服务器能正常响应,则会得到一个Response
Response包含:html,json,图片,视频等
3、解析内容
解析html数据:正则表达式(RE模块),第三方解析库如Beautifulsoup,pyquery等
解析json数据:json模块
解析二进制数据:以wb的方式写入文件
4、保存数据
数据库(MySQL,Mongdb、Redis)
文件
三、http协议 请求与响应
Request:用户将自己的信息通过浏览器(socket client)发送给服务器(socket server)
Response:服务器接收请求,分析用户发来的请求信息,然后返回数据(返回的数据中可能包含其他链接,如:图片,js,css等)
ps:浏览器在接收Response后,会解析其内容来显示给用户,而爬虫程序在模拟浏览器发送请求然后接收Response后,是要提取其中的有用数据。
四、 request
1、请求方式:
常见的请求方式:GET / POST
2、请求的URL
url全球统一资源定位符,用来定义互联网上一个唯一的资源 例如:一张图片、一个文件、一段视频都可以用url唯一确定
url编码
https://www.baidu.com/s?wd=图片
图片会被编码(看示例代码)
网页的加载过程是:
加载一个网页,通常都是先加载document文档,
在解析document文档的时候,遇到链接,则针对超链接发起下载图片的请求
3、请求头
User-agent:请求头中如果没有user-agent客户端配置,服务端可能将你当做一个非法用户host;
cookies:cookie用来保存登录信息
注意: 一般做爬虫都会加上请求头
请求头需要注意的参数:
(1)Referrer:访问源至哪里来(一些大型网站,会通过Referrer 做防盗链策略;所有爬虫也要注意模拟)
(2)User-Agent:访问的浏览器(要加上否则会被当成爬虫程序)
(3)cookie:请求头注意携带
4、请求体
请求体
如果是get方式,请求体没有内容 (get请求的请求体放在 url后面参数中,直接能看到)
如果是post方式,请求体是format data
ps:
1、登录窗口,文件上传等,信息都会被附加到请求体内
2、登录,输入错误的用户名密码,然后提交,就可以看到post,正确登录后页面通常会跳转,无法捕捉到post
五、 响应Response
1、响应状态码
200:代表成功
301:代表跳转
404:文件不存在
403:无权限访问
502:服务器错误
2、respone header
响应头需要注意的参数:
(1)Set-Cookie:BDSVRTM=0; path=/:可能有多个,是来告诉浏览器,把cookie保存下来
(2)Content-Location:服务端响应头中包含Location返回浏览器之后,浏览器就会重新访问另一个页面
3、preview就是网页源代码
JSO数据
如网页html,图片
二进制数据等
六、总结
1、总结爬虫流程:
爬取—>解析—>存储
2、爬虫所需工具:
请求库:requests,selenium(可以驱动浏览器解析渲染CSS和JS,但有性能劣势(有用没用的网页都会加载);)
解析库:正则,beautifulsoup,pyquery
存储库:文件,MySQL,Mongodb,Redis
3、爬获校花网
最后送给大家点福利吧
基础版:
import re import requests respose=requests.get(\'http://www.xiaohuar.com/v/\') # print(respose.status_code)# 响应的状态码 # print(respose.content) #返回字节信息 # print(respose.text) #返回文本内容 urls=re.findall(r\'class="items".*?href="(.*?)"\',respose.text,re.S) #re.S 把文本信息转换成1行匹配 url=urls[5] result=requests.get(url) mp4_url=re.findall(r\'id="media".*?src="(.*?)"\',result.text,re.S)[0] video=requests.get(mp4_url) with open(\'D:\\a.mp4\',\'wb\') as f: f.write(video.content)
View Code
函数封装版
import re import requests import hashlib import time # respose=requests.get(\'http://www.xiaohuar.com/v/\') # # print(respose.status_code)# 响应的状态码 # # print(respose.content) #返回字节信息 # # print(respose.text) #返回文本内容 # urls=re.findall(r\'class="items".*?href="(.*?)"\',respose.text,re.S) #re.S 把文本信息转换成1行匹配 # url=urls[5] # result=requests.get(url) # mp4_url=re.findall(r\'id="media".*?src="(.*?)"\',result.text,re.S)[0] # # video=requests.get(mp4_url) # # with open(\'D:\\a.mp4\',\'wb\') as f: # f.write(video.content) # def get_index(url): respose = requests.get(url) if respose.status_code==200: return respose.text def parse_index(res): urls = re.findall(r\'class="items".*?href="(.*?)"\', res,re.S) # re.S 把文本信息转换成1行匹配 return urls def get_detail(urls): for url in urls: if not url.startswith(\'http\'): url=\'http://www.xiaohuar.com%s\' %url result = requests.get(url) if result.status_code==200 : mp4_url_list = re.findall(r\'id="media".*?src="(.*?)"\', result.text, re.S) if mp4_url_list: mp4_url=mp4_url_list[0] print(mp4_url) # save(mp4_url) def save(url): video = requests.get(url) if video.status_code==200: m=hashlib.md5() m.updata(url.encode(\'utf-8\')) m.updata(str(time.time()).encode(\'utf-8\')) filename=r\'%s.mp4\'% m.hexdigest() filepath=r\'D:\\%s\'%filename with open(filepath, \'wb\') as f: f.write(video.content) def main(): for i in range(5): res1 = get_index(\'http://www.xiaohuar.com/list-3-%s.html\'% i ) res2 = parse_index(res1) get_detail(res2) if __name__ == \'__main__\': main()
View Code
并发版(如果一共需要爬30个视频,开30个线程去做,花的时间就是 其中最慢那份的耗时时间)
import re import requests import hashlib import time from concurrent.futures import ThreadPoolExecutor p=ThreadPoolExecutor(30) #创建1个程池中,容纳线程个数为30个; def get_index(url): respose = requests.get(url) if respose.status_code==200: return respose.text def parse_index(res): res=res.result() #进程执行完毕后,得到1个对象 urls = re.findall(r\'class="items".*?href="(.*?)"\', res,re.S) # re.S 把文本信息转换成1行匹配 for url in urls: p.submit(get_detail(url)) #获取详情页 提交到线程池 def get_detail(url): #只下载1个视频 if not url.startswith(\'http\'): url=\'http://www.xiaohuar.com%s\' %url result = requests.get(url) if result.status_code==200 : mp4_url_list = re.findall(r\'id="media".*?src="(.*?)"\', result.text, re.S) if mp4_url_list: mp4_url=mp4_url_list[0] print(mp4_url) # save(mp4_url) def save(url): video = requests.get(url) if video.status_code==200: m=hashlib.md5() m.updata(url.encode(\'utf-8\')) m.updata(str(time.time()).encode(\'utf-8\')) filename=r\'%s.mp4\'% m.hexdigest() filepath=r\'D:\\%s\'%filename with open(filepath, \'wb\') as f: f.write(video.content) def main(): for i in range(5): p.submit(get_index,\'http://www.xiaohuar.com/list-3-%s.html\'% i ).add_done_callback(parse_index) #1、先把爬主页的任务(get_index)异步提交到线程池 #2、get_index任务执行完后,会通过回调函add_done_callback()数通知主线程,任务完成; #2、把get_index执行结果(注意线程执行结果是对象,调用res=res.result()方法,才能获取真正执行结果),当做参数传给parse_index #3、parse_index任务执行完毕后, #4、通过循环,再次把获取详情页 get_detail()任务提交到线程池执行 if __name__ == \'__main__\': main()
View Code
涉及知识:多线程多进程
计算密集型任务:使用多进程,因为能Python有GIL,多进程可以利用上CPU多核优势;
IO密集型任务:使用多线程,做IO切换节省任务执行时间(并发)
线程池
参考博客:
瞎驴http://www.cnblogs.com/linhaifeng/articles/7773496.html