|NO.Z.00040|——————————|BigDataEnd|——|Hadoop&MapReduce.V13|——|Hadoop.v13|MR reduce端join|
一、MR reduce端join
### --- MR reduce端join
~~~ [Reduce端Join需求分析]
~~~ [Reduce端Join-Mapper&Bean对象]
~~~ [Reduce端Join-Reducer&Driver实现]
~~~ [Reduce端Join-程序验证]
### --- 需求分析
~~~ # 需求:
~~~ 投递行为数据表deliver_info:
~~~ 假如数据量巨大,两表的数据是以文件的形式存储在HDFS中,
~~~ 需要用mapreduce程序来实现一下SQL查询运算
userId | positionId | date |
1001 | 177725422 | 2020-01-03 |
1002 | 177725422 | 2020-01-04 |
1002 | 177725433 | 2020-01-03 |
职位表position
id | positionName |
177725422 | 产品经理 |
177725433 | 大数据开发工程师 |
二、代码实现
### --- 通过将关联的条件作为map输出的key,
~~~ 将两表满足join条件的数据并携带数据所来源的文件信息,
~~~ 发往同一个reduce task,在reduce中进行数据的串联
### --- 创建项目:reduce_join
### --- Driver
package com.yanqi.mr.reduce_join;
import com.yanqi.mr.wc.WordCountCombiner;
import com.yanqi.mr.wc.WordCountDriver;
import com.yanqi.mr.wc.WordCountMapper;
import com.yanqi.mr.wc.WordCountReducer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class ReduceJoinDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
// 1. 获取配置文件对象,获取job对象实例
final Configuration conf = new Configuration();
final Job job = Job.getInstance(conf, "ReduceJoinDriver");
// 2. 指定程序jar的本地路径
job.setJarByClass(ReduceJoinDriver.class);
// 3. 指定Mapper/Reducer类
job.setMapperClass(ReduceJoinMapper.class);
job.setReducerClass(ReduceJoinReducer.class);
// 4. 指定Mapper输出的kv数据类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(DeliverBean.class);
// 5. 指定最终输出的kv数据类型
job.setOutputKeyClass(DeliverBean.class);
job.setOutputValueClass(NullWritable.class);
FileInputFormat.setInputPaths(job, new Path(args[0])); //指定读取数据的原始路径
// 7. 指定job输出结果路径
FileOutputFormat.setOutputPath(job, new Path(args[1])); //指定结果数据输出路径
// 8. 提交作业
final boolean flag = job.waitForCompletion(true);
//jvm退出:正常退出0,非0值则是错误退出
System.exit(flag ? 0 : 1);
}
}
### --- Mapper
package com.yanqi.mr.reduce_join;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import java.io.IOException;
//输出kv类型:k: positionId,v: deliverBean
public class ReduceJoinMapper extends Mapper<LongWritable, Text, Text, DeliverBean> {
String name = "";
Text k = new Text();
//读取的是投递行为数据
DeliverBean bean = new DeliverBean();
//map任务启动时初始化执行一次
@Override
protected void setup(Context context) throws IOException, InterruptedException {
InputSplit inputSplit = context.getInputSplit();
FileSplit split = (FileSplit) inputSplit;
name = split.getPath().getName();
}
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String[] arr = line.split("\t");
if (name.startsWith("deliver_info")) {
//读取的是投递行为数据
bean.setUserId(arr[0]);
bean.setPositionId(arr[1]);
bean.setDate(arr[2]);
//先把空属性置为字符串空
bean.setPositionName("");
bean.setFlag("deliver");
} else {
bean.setUserId("");
bean.setPositionId(arr[0]);
bean.setDate("");
//先把空属性置为字符串空
bean.setPositionName(arr[1]);
bean.setFlag("position");
}
k.set(bean.getPositionId());
context.write(k, bean);
}
}
### --- Reducer
package com.yanqi.mr.reduce_join;
import org.apache.commons.beanutils.BeanUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
import java.lang.reflect.InvocationTargetException;
import java.util.ArrayList;
public class ReduceJoinReducer extends Reducer<Text, DeliverBean, DeliverBean, NullWritable> {
@Override
protected void reduce(Text key, Iterable<DeliverBean> values, Context context) throws IOException,
InterruptedException {
//相同positionid的 bean对象放到一起(1个职位数据,n个投递行为数据)
ArrayList<DeliverBean> deBeans = new ArrayList<>();
DeliverBean positionBean = new DeliverBean();
for (DeliverBean bean : values) {
String flag = bean.getFlag();
if (flag.equalsIgnoreCase("deliver")) {
//投递行为数据
//此处不能直接把bean对象添加到debeans中,需要深度拷贝才行
DeliverBean newBean = new DeliverBean();
try {
BeanUtils.copyProperties(newBean, bean);
deBeans.add(newBean);
} catch (IllegalAccessException e) {
e.printStackTrace();
} catch (InvocationTargetException e) {
e.printStackTrace();
}
} else {
//职位
try {
BeanUtils.copyProperties(positionBean, bean);
} catch (IllegalAccessException e) {
e.printStackTrace();
} catch (InvocationTargetException e) {
e.printStackTrace();
}
}
}
//遍历投递行为数据拼接positionname
for (DeliverBean bean : deBeans) {
bean.setPositionName(positionBean.getPositionName());
context.write(bean, NullWritable.get());
}
}
}
### --- Bean
package com.yanqi.mr.reduce_join;
import org.apache.hadoop.io.Writable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
public class DeliverBean implements Writable {
private String userId;
private String positionId;
private String date;
private String positionName;
//判断是投递数据还是职位数据标识
private String flag;
public DeliverBean() {
}
public String getUserId() {
return userId;
}
public void setUserId(String userId) {
this.userId = userId;
}
public String getPositionId() {
return positionId;
}
public void setPositionId(String positionId) {
this.positionId = positionId;
}
public String getDate() {
return date;
}
public void setDate(String date) {
this.date = date;
}
public String getPositionName() {
return positionName;
}
public void setPositionName(String positionName) {
this.positionName = positionName;
}
public String getFlag() {
return flag;
}
public void setFlag(String flag) {
this.flag = flag;
}
@Override
public void write(DataOutput out) throws IOException {
out.writeUTF(userId);
out.writeUTF(positionId);
out.writeUTF(date);
out.writeUTF(positionName);
out.writeUTF(flag);
}
@Override
public void readFields(DataInput in) throws IOException {
this.userId = in.readUTF();
this.positionId = in.readUTF();
this.date = in.readUTF();
this.positionName = in.readUTF();
this.flag = in.readUTF();
}
@Override
public String toString() {
return "DeliverBean{" +
"userId='" + userId + '\'' +
", positionId='" + positionId + '\'' +
", date='" + date + '\'' +
", positionName='" + positionName + '\'' +
", flag='" + flag + '\'' +
'}';
}
}
### --- 缺点:
~~~ 这种方式中,join的操作是在reduce阶段完成,reduce端的处理压力太大,
~~~ map节点的运算负载则很低,资源利用率不高,且在reduce阶段极易产生数据倾斜
三、编译打印
### --- 编译打印
~~~ 设置打印输入输出参数
~~~ 编译打印
Walter Savage Landor:strove with none,for none was worth my strife.Nature I loved and, next to Nature, Art:I warm’d both hands before the fire of life.It sinks, and I am ready to depart
——W.S.Landor
版权声明:本文为yanqi_vip原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。