首先编写wordcountMap类

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class WordCountMap extends Mapper<LongWritable, Text,Text, IntWritable> {
    /*
    * LongWritable:偏移量,表示该行在文件中的位置,而不是行号
    * Text map阶段的输入数据,一行文本信息,字符串类型String
    * Text map阶段的数据字符串类型String
    * IntWritable map阶段输出的value类型,对应Java中的int类型,表示行号
    * */

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        //读取每行文本
        String line = value.toString();
        //splite拆分
        String[] words= line.split(" ");
        //取出每个单词
        for (String word:words){
            //将单词转换为Text类型的
            Text wordText = new Text(word);
            //将1转变为IntWritablele
            IntWritable outValue = new IntWritable(1);
            //写出单词跟对应1
            context.write(wordText,outValue);
        }
    }
}

再编写wordcountreduce类

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class WordCountReduce extends Reducer<Text, IntWritable,Text,IntWritable> {
    /*
    * Text:输入的字符串类型,序列化
    * IntWritable:输入一串1,序列化
    * Text:输出的字符串类型,序列化
    * IntWritable:输出的求和数组,序列化
    * */
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
        /*
        * key:输入的单词的名字
        * values:输入一串1
        * context:输入的工具
        * */
        int sum=0;
        for(IntWritable number:values){
            sum+=number.get();
        }
        context.write(key,new IntWritable(sum));
    }
}

最后编写wordcount类将前面的两个类结合起来

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {
    public static void main(String[] args) throws Exception {
        // 创建本次mr程序的job实例
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        // 指定本次job运行的主类
        job.setJarByClass(WordCount.class);

        // 指定本次job的具体mapper reducer实现类
        job.setMapperClass(WordCountMap.class);
        job.setReducerClass(WordCountReduce.class);

        // 指定本次job map阶段的输出数据类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);

        // 指定本次job reduce阶段的输出数据类型 也就是整个mr任务的最终输出类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        // 指定本次job待处理数据的目录 和程序执行完输出结果存放的目录
        FileInputFormat.setInputPaths(job, "E:\\Demo\\hadoop\\input\\Wordcount.txt");
        FileOutputFormat.setOutputPath(job, new Path("E:\\Demo\\hadoop\\output"));

        // 提交本次job
        boolean b = job.waitForCompletion(true);

        System.exit(b ? 0 : 1);
    }
}

(需要提前在Wordcount.txt中写入文本)

版权声明:本文为小酒馆里的清茶原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/xiaojiuguan/p/16243715.html